, Volume 111, Issue 1–3, pp 411–425 | Cite as

High resolution characterization of ectomycorrhizal fungal-mineral interactions in axenic microcosm experiments

  • Loredana Saccone
  • Salvatore A. Gazzè
  • Adele L. Duran
  • Jonathan R. Leake
  • Steven A. Banwart
  • Kristín Vala Ragnarsdóttir
  • Mark M. Smits
  • Terence J. McMaster


Microcosms with Pinus sylvestris seedlings in symbiosis with the fungus mycorrhizal Paxillus involutus were established, and atomic force microscopy (AFM) was used to characterise plant photosynthate-driven fungal interactions with mineral surfaces. Comparison of images of the same area of the minerals before and after mycorrhizal fungal colonization showed extensive growth of hyphae on three different mineral surfaces – hornblende, biotite and chlorite. A layer of biological exudate, or biolayer, covered the entire mineral surface and was composed of globular features of diameter 10–80 nm, and the morphology of the biolayer differed among mineral types. Similar-sized components were found on the fungal hyphae, but with a more elongated profile. Biolayer and hyphae surfaces both appeared to be hydrophobic with the hyphal surfaces yielding higher maximal adhesive interactions and a wider range of values: the mean (± SE) adhesive forces were 2.63 ± 0.03 and 3.46 ± 0.18 nN for biolayer and hypha, respectively. The highest adhesion forces are preferentially localized at the hyphal surface above the Spitzenkörper region and close to the tip, with a mean interaction force in this locality of 5.24 ± 0.49 nN. Biolayer thickness was between 10 and 40 nm. The underlying mineral was easily broken up by the tip, in contrast to the native mineral. These observations of mineral surfaces colonised by mycorrhizal fungus demonstrate how fungal hyphae are able to form a layer of organic exudates, or biolayer, and its role in hyphal attachment and potential weathering of ferromagnesian silicates, which may supply nutrients to the plant.


Ectomycorrhizal fungi Hyphae Mineral weathering Biolayer AFM Force mapping 



This work was funded by the Natural Environment Research Council (NERC), consortium grant no NE/C521044/1, and is part of the Weathering Science Consortium (WSC) project on mineral weathering. This research project closely collaborates with MISSION ‘Mineral Surface Science for Nanotechnology’, a Marie Curie Early Stage Training Scheme (MEST-CT-2005-020828).


  1. Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16:65–92CrossRefGoogle Scholar
  2. Bakker MR, George E, Turpault MP, Zhang JL, Zeller B (2004) Impact of Douglas-fir and scots pine seedlings on plagioclase weathering under acidic conditions. Plant Soil 266:247–259CrossRefGoogle Scholar
  3. Balogh-Brunstad Z, Keller CK, Dickinson JT, Stevens F, Li CY, Bormann BT (2008a) Biotite weathering and nutrient uptake by ectomycorrhizal fungus Suillus tomentosus, in liquid-culture experiments. Geochim Cosmochim Acta 72:2601–2618CrossRefGoogle Scholar
  4. Balogh-Brunstad Z, Keller CK, Gill RA, Bormann BT, Li CY (2008b) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167CrossRefGoogle Scholar
  5. Beech IB, Smith JR, Steele AA, Penegar I, Campbell SA (2002) The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloid Surf B 23:231–247CrossRefGoogle Scholar
  6. Berner RA (1997) Paleoclimate–The rise of plants and their effect on weathering and atmospheric CO2. Science 276:544–545CrossRefGoogle Scholar
  7. Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731CrossRefGoogle Scholar
  8. Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, Benning LG (2009) Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615–618CrossRefGoogle Scholar
  9. Bremer PJ, Geesey GG, Drake B (1992) Atomic force microscopy of the topography of a hydrated bacterial biofilm on a copper surface. Curr Microbiol 24:223–230CrossRefGoogle Scholar
  10. Buss HL, Brantley SL, Liermann LJ (2003) Non-destructive methods for removal of bacteria from silicate surfaces. Geomicrobiol J 20:25–42CrossRefGoogle Scholar
  11. Buss HL, Lüttge A, Brantley SL (2007) Etch pit formation on iron silicates surfaces during siderophore-promoted dissolution. Chem Geol 240:326–342CrossRefGoogle Scholar
  12. Callow JA, Crawford SA, Higgins MJ, Mulvaney P, Wetherbee R (2000) The application of atomic force microscopy to topographical studies and force measurements on the secreted adhesive of the green alga Enteromorpha. Planta 211:641–647CrossRefGoogle Scholar
  13. Deer WA, Howie RA, Zussmann J (1992) The rock-forming minerals, 2nd edn. Longman Group (FE) Limited, Hong Kong, p 696Google Scholar
  14. Dufrêne YF (2000) Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys J 78:3286–3291CrossRefGoogle Scholar
  15. Dufrêne YF, Boonaert CJP, Gerin PA, Asther M, Rouxhet PG (1999) Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J Bacteriol 181:5350–5354Google Scholar
  16. Elliot MA, Talbot NJ (2004) Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol 7:594–601CrossRefGoogle Scholar
  17. Harding MW, Marques LLR, Howard RJ, Olson ME (2009) Can filamentous fungi form biofilms? Trends Microbiol 17:475–480CrossRefGoogle Scholar
  18. Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2002) Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy. Protist 153:25–38CrossRefGoogle Scholar
  19. Hoffland E, Giesler R, Jongmans AG, van Breemen N (2002) Increasing feldspar tunnelling by fungi across a Mid-Sweden podzol chronosequence. Ecosystems 5:11–22CrossRefGoogle Scholar
  20. Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683CrossRefGoogle Scholar
  21. Kaminskyj SGW, Dahms TES (2008) High spatial resolution surface imaging and analysis of fungal cells using SEM and AFM. Micron 39:349–361CrossRefGoogle Scholar
  22. Landerweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254CrossRefGoogle Scholar
  23. Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and P. involutus (Batsch) Fr APS 18:659–673Google Scholar
  24. Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow DT, Söderström B (eds) The mycota. Environmental and microbial relationships. Springer Verlag, Berlin, pp 281–301Google Scholar
  25. Leake JR, Johnson D, Donnelly D, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Can J Botany 82:1016–1045CrossRefGoogle Scholar
  26. Leake JR, Duran AL, Hardy KE, Johnson I, Beerling DJ, Banwart SA, Smits MM (2008) Biological weathering in soil: the role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering. Mineral Mag 72:85–89CrossRefGoogle Scholar
  27. Leake JR, Duran AL, Johnson I, Bonneville S, Smits MM (2009) Hydroxyapatite weathering by pine mycorrhizas – the role of oxalic acid. Geochim Cosmochim Acta 73:A732Google Scholar
  28. Lee CK, Wang YM, Huang LS, Lin S (2007) Atomic force microscopy: determination of unbinding force, off-rate and energy barrier for protein–ligand interaction. Micron 38:446–461CrossRefGoogle Scholar
  29. Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896CrossRefGoogle Scholar
  30. Lo Y-S, Huefner ND, Chan WS, Dryden P, Hagenhoff B, Beebe TP (1999) Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 15:6522–6526CrossRefGoogle Scholar
  31. Ma H, Snook LA, Kaminskyj SGW, Dahms TES (2005) Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiol-SMG 151:3679–3688CrossRefGoogle Scholar
  32. Ma H, Snook LA, Tian C, Kaminskyj SGW, Dahms TES (2006) Fungal surface remodelling visualized by atomic force microscopy. Mycol Res 110:879–886CrossRefGoogle Scholar
  33. McMaster TJ, Smits MM, Harvard SJ, Leake JR, Banwart SA, Ragnarsdottir KV (2008) High-resolution imaging of biotite dissolution and measurement of activation energy. Mineral Mag 72:115–120CrossRefGoogle Scholar
  34. Mikutta R, Kleber M, Kaiser K, Jahn R (2005) Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci Soc Am J 69:120–135CrossRefGoogle Scholar
  35. Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi.II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150CrossRefGoogle Scholar
  36. Rajashekar B, Samson P, Johansson T, Tunlid A (2007) Evolution of nucleotide sequences and expression patterns of hydrophobin genes in the ectomycorrhizal fungus P. involutus. New Phytol 174:399–411CrossRefGoogle Scholar
  37. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Botany 82:1243–1263CrossRefGoogle Scholar
  38. Saccone L, Gazze SA, Ragnarsdottir KV, Leake JR, Duran AL, Hallam KR, McMaster TJ (2009) P. involutus hyphae: imaging their structure and interaction with mineral surfaces using AFM. Geochim Cosmochim Acta 73:A1140Google Scholar
  39. Schmalenberger A, Duran AL, Leake JR, Romero-Gonzales ME, Banwart SA (2009) Mineralogy controls oxalic acid release in mycorrhizal weathering. Geochim Cosmochim Acta 73:A1177Google Scholar
  40. Schmitz I, Schreiner M, Friedbacher G, Grasserbauer M (1997) Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces. Appl Surf Sci 115:190–198CrossRefGoogle Scholar
  41. Sirghi L, Kylián O, Gilliland D, Ceccone G, Rossi F (2006) Cleaning and hydrophilization of atomic force microscopy silicon probes. J Phys Chem 110:25975–25981Google Scholar
  42. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  43. Smits MM, Hoffland E, van Breemen N (2004) Contribution of mineral tunnelling to total feldspar weathering. Geoderma 125:59–69CrossRefGoogle Scholar
  44. Taylor LL, Leake JR, Quirk J, Hardy K, Banwart SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiol 7:171–191CrossRefGoogle Scholar
  45. Tortonese M, Kirk M (1997) Characterization of application specific probes for SPMs. P Soc Photo-Opt Ins Proc 3009:53–60Google Scholar
  46. Van der Aa BC, Dufrêne YF (2002) In situ characterization of bacterial extracellular polymeric substances by AFM. Colloid Surf B 23:173–182CrossRefGoogle Scholar
  47. Van Hees PAW, Godbold DL, Jentschke G, Jones DL (2003) Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. Eur J Soil Sci 54:697–706CrossRefGoogle Scholar
  48. Van Hees PAW, Jones DL, Jentschke G, Godbold DL (2004) Mobilization of aluminium, iron and silicon by Picea abies and ectomycorrhizas in a forest soil. Eur J Soil Sci 55:101–111CrossRefGoogle Scholar
  49. Van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814CrossRefGoogle Scholar
  50. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256CrossRefGoogle Scholar
  51. Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413CrossRefGoogle Scholar
  52. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Ann Rev Microbiol 55:625–646CrossRefGoogle Scholar
  53. Wösten HAB, de Vries OMH, Wessels JGH (1993) Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5:1567–1574Google Scholar
  54. Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer silica fibre surface studied by tapping mode atomic force microscopy. Surf Sci 290:688–692CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Loredana Saccone
    • 1
    • 4
  • Salvatore A. Gazzè
    • 1
  • Adele L. Duran
    • 2
  • Jonathan R. Leake
    • 2
  • Steven A. Banwart
    • 3
  • Kristín Vala Ragnarsdóttir
    • 4
  • Mark M. Smits
    • 5
  • Terence J. McMaster
    • 1
  1. 1.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.Department of Animal and Plant Sciences, Alfred Denny BuildingUniversity of SheffieldSheffieldUK
  3. 3.Department of Civil and Structural Engineering, Kroto Research Institute, North CampusUniversity of SheffieldSheffieldUK
  4. 4.Faculty of Earth Sciences, School of Engineering and Natural SciencesUniversity of IcelandAskjaIceland
  5. 5.Environmental BiologyHasselt UniversityDiepenbeekBelgium

Personalised recommendations