Advertisement

Biogeochemistry

, Volume 110, Issue 1–3, pp 215–241 | Cite as

DMS dynamics in the most oligotrophic subtropical zones of the global ocean

  • Sauveur Belviso
  • Italo Masotti
  • Alessandro Tagliabue
  • Laurent Bopp
  • P. Brockmann
  • Cédric Fichot
  • Guy Caniaux
  • Louis Prieur
  • Joséphine Ras
  • Julia Uitz
  • Hubert Loisel
  • David Dessailly
  • Séverine Alvain
  • Nobue Kasamatsu
  • Mitsuo Fukuchi
Article

Abstract

The influences of physico-chemical and biological processes on dimethylsulfide (DMS) dynamics in the most oligotrophic subtropical zones of the global ocean were investigated. As metrics for the dynamics of DMS and the so-called ‘summer DMS paradox’ of elevated summer concentrations when surface chlorophyll a (Chl) and particulate organic carbon (POC) levels are lowest, we used the DMS-to-Chl and DMS-to-POC ratios in the context of three independent and complementary approaches. Firstly, field observations of environmental variables (such as the solar radiation dose, phosphorus limitation of phytoplankton and bacterial growth) were used alongside discrete DMS, Chl and POC estimates extracted from global climatologies (i.e., a ‘station based’ approach). We then used monthly climatological data for DMS, Chl, and POC averaged over the biogeographic province wherein a given oligotrophic subtropical zone resides (i.e., a ‘province based’ approach). Finally we employed sensitivity experiments with a new DMS module coupled to the ocean general circulation and biogeochemistry model PISCES to examine the influence of various processes in governing DMS dynamics in oligotrophic regions (i.e., a ‘model based’ approach). We find that the ‘station based’ and ‘province based’ approaches yield markedly different results. Interestingly, the ‘province based’ approach suggests the presence of a ‘summer DMS paradox’ in most all of the oligotrophic regions we studied. In contrast, the ‘station based’ approach suggests that the ‘summer DMS paradox’ is only present in the Sargasso Sea and eastern Mediterranean. Overall, we found the regional differences in the absolute and relative concentrations of DMS between 5 of the most oligotrophic regions of the world’s oceans were better accounted for by their nutrient dynamics (specifically phosphorus limitation) than by physical factors often invoked, e.g., the solar radiation dose. Our ‘model based’ experiments suggest that it is the limitation of phytoplankton/bacterial production and bacterial consumption of DMS by pervasive phosphorus limitation that is responsible for the ‘summer DMS paradox’.

Keywords

Dimethylsulfide (DMS) Oligotrophy Summer DMS paradox Modelling Field observations 

Notes

Acknowledgments

We are grateful to J.E. Johnson (JISAO, University of Washington) and T.S. Bates (PMEL, NOAA) for the maintenance and personal involvement in the Global Surface Seawater DMS Database. The authors also wish to thank each of the participants in the joint initiative of the SOLAS Integration project and the EU project COST Action 735 for providing an updated DMS climatology, with special thanks to the lead author A. Lana. A. Longhurst kindly provided the biogeographic provinces data. We would like to thank A. Morel and B. Gentili for sharing ocean color data. We are grateful to Dr. Scott Elliott and an anonymous reviewer for improvements to an earlier version of this manuscript. The model work was performed using HPC resources from GENCI-IDRIS (Grant 2009-010040 LSCE contribution 4662).

References

  1. Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles. doi: 10.1029/2007GB003154
  2. Andreae MO (1990) Ocean–atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30:1–29CrossRefGoogle Scholar
  3. Archer SD, Smith GC, Nightingale PD, Widdicombe CE, Tarran GA, Rees AP, Burkill PH (2002) Dynamics of particulate dimethylsulphoniopropionate during a Lagrangian experiment in the northern North Sea. Deep-Sea Res Part II 49:2979–2999CrossRefGoogle Scholar
  4. Archer SD, Gilbert FJ, Allen JI, Blackford J, Nightingale PD (2004) Modelling of the seasonal patterns of dimethylsulphide production and fate during 1989 at a site in the North Sea. Can J Fish Aquat Sci 61:765–787CrossRefGoogle Scholar
  5. Archer SD, Cummings DG, Llewellyn CA, Fishwick JR (2009) Phytoplankton taxa, irradiance and nutrient availability determine the seasonal cycle of DMSP in temperate shelf seas. Mar Ecol Prog Ser 394:111–124CrossRefGoogle Scholar
  6. Aumont O, Bopp L (2006) Globalizing results from ocean in situ fertilization experiments. Glob Biogeochem Cycles. doi: 10.1029/2005GB002591
  7. Aumont O, Belviso S, Monfray P (2002) Dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) sea surface distributions simulated from a global threedimensional ocean carbon cycle model. J Geophys Res Oceans. doi: 10.1029/1999JC000111
  8. Aumont O, Bopp L, Schulz M (2008) What does temporal variability in aeolian dust deposition contribute to sea-surface iron and chlorophyll distributions? Geophys Res Lett. doi: 10.1029/2007GL031131
  9. Belviso S, Caniaux G (2009) A new assessment in North Atlantic waters of the relationship between DMS concentration and the upper mixed layer solar radiation dose. Glob Biogeochem Cycles. doi: 10.1029/2008GB003382
  10. Bopp L, Aumont O, Belviso S, Blain S (2008) Modeling the effect of iron fertilization on dimethylsulfide emissions in the Southern Ocean. Deep-Sea Res Part II 35:901–912CrossRefGoogle Scholar
  11. Bouillon RC, Miller WL (2004) Determination of apparent quantum yield spectra of DMS photo-degradation in an in situ iron-induced Northeast Pacific Ocean bloom. Geophys Res Lett. doi: 10.1029/2004GL019536
  12. Bucciarelli E, Sunda WG (2003) Influence of CO2, nitrate, phosphate, and silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the coastal diatom Thalassiosira pseudonana. Limnol Oceanogr 48:2256–2265CrossRefGoogle Scholar
  13. Cotner JB, Ammerman JW, Peele ER, Bentzen E (1997) Phosphorus-limited bacterioplankton growth in the Sargasso Sea. Aquat Microb Ecol 13:141–149CrossRefGoogle Scholar
  14. Dacey JWH, Howse FA, Michaels AF, Wakeham SG (1998) Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep-Sea Res Part I 45:2085–2104CrossRefGoogle Scholar
  15. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and profile-based climatology. J Geophys Res Oceans. doi: 10.1029/2004JC002378
  16. Derevianko GJ, Deutsch C, Hall A (2009) On the relationship between ocean DMS and solar radiation. Geophys Res Lett. doi: 10.1029/2009GL039412
  17. Duforêt-Gaurier L, Loisel H, Dessailly D, Nordkvist K, Alvain S (2010) Estimates of particulate organic carbon over the euphotic depth from in situ measurements. Application to satellite data over the global ocean. Deep-Sea Res Part I 57:351–367CrossRefGoogle Scholar
  18. Elliott S (2009) Dependence of DMS global sea-air flux distribution on transfer velocity and concentration field type. J Geophys Res Oceans. doi: 10.1029/2008JG000710
  19. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  20. Fichot CG, Miller WL (2010) An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: application to carbon monoxide (CO) photoproduction. Remote Sens Environ 114:1363–1377CrossRefGoogle Scholar
  21. Fichot CG, Sathyendranath S, Miller WL (2008) SeaUV and SeaUVc: algorithms for the retrieval of UV diffuse attenuation coefficients from ocean color. Remote Sens Environ 112(4):1584–1602Google Scholar
  22. Jerlov NG (1974) A simple method for measuring quanta irradiance in the ocean, Rep. 24. Inst. Fysik Oceanografi, Kobenhavens UniversitetGoogle Scholar
  23. Jerlov NG (1977) Classification of sea water in terms of quanta irradiance. J Cons Int Explor Mer 37(3):281–287Google Scholar
  24. Jitts HR, Morel A, Saijo Y (1976) The relation of oceanic primary production to available photosynthetic irradiance. Aust J Mar Freshw Res 27:441–454CrossRefGoogle Scholar
  25. Kara AB, Rochford PA, Hurlburt HE (2003) Mixed layer depth variability over the global ocean. J Geophys Res Oceans. doi: 10.1029/2000JC000736
  26. Karsten U, Kück K, Vogt C, Kirst GO (1996) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, New York, pp 143–153CrossRefGoogle Scholar
  27. Katsaros K, Mcmurdie L, Lind R, DeVault J (1985) Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle and wind speed. J Geophys Res Oceans 90:7313–7321CrossRefGoogle Scholar
  28. Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H, Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB, Keller MD, Kiene RP, Leck C, Levasseur M, Malin G, Maspero M, Matrai P, McTaggart AR, Mihalopoulos N, Nguyen BC, Novo A, Putaud JP, Rapsomanikis S, Roberts G, Schebeske G, Sharma S, Simo R, Staubes R, Turner S, Uher G (1999) A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Glob Biogeochem Cycles 13:399–444CrossRefGoogle Scholar
  29. Kieber DJ, Jiao JF, Kiene RP, Bates TS (1996) Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. J Geophys Res Oceans 101:3715–3722CrossRefGoogle Scholar
  30. Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224CrossRefGoogle Scholar
  31. Lana A, Bell TG, Simó R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean, Glob Biogeochem Cycles. doi: 10.1029/2010GB003850
  32. Langley L, Leaitch WR, Lohmann U, Shantz NC, Worsnop DR (2010) Contributions from DMS and ship emissions to CCN observed over the summertime North Pacific. Atmos Chem Phys 10:1287–1314CrossRefGoogle Scholar
  33. Lefèvre M, Vézina A, Levasseur M, Dacey JWH (2002) A model of dimethylsulphide dynamics for the subtropical North Atlantic. Deep-Sea Res Part I 49:2221–2239CrossRefGoogle Scholar
  34. Lomas MW, Burke AL, Lomas DA, Bell DW, Shen C, Dyhrman ST, Ammerman JW (2010) Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP). Biogeosciences 7:695–710CrossRefGoogle Scholar
  35. Longhurst A (1998) Ecological geography of the sea. Academic, LondonGoogle Scholar
  36. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA8.1 ocean general circulation model reference manual. Notes du pôle de modélisation de l’IPSLGoogle Scholar
  37. Mather RL, Reynolds SE, Wolff GA, Williams RG, Torres-Valdes S, Woodward ME, Landolfi A, Pan X, Sanders R, Achterberg EP (2008) Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat Geosci 1:439–443CrossRefGoogle Scholar
  38. Miles CJ, Bell TG, Lenton TM (2009) Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data. Biogeosciences 6:1927–1934CrossRefGoogle Scholar
  39. Morel A, Berthon JF (1989) Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications. Limnol Oceanogr 34(8):1545–1562CrossRefGoogle Scholar
  40. Morel A, Gentili B (2009) The dissolved yellow substance and the shades of blue in the Mediterranean Sea. Biogeosciences 6:2625–2636CrossRefGoogle Scholar
  41. Morel A, Claustre H, Gentili B (2010) The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 7:3139–3151CrossRefGoogle Scholar
  42. Moutin T, Karl DM, Duhamel S, Rimmelin P, Raimbault P, Van Mooy BAS, Claustre H (2008) Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences 5:95–109CrossRefGoogle Scholar
  43. Payne RE (1972) Albedo of the sea surface. J Atmos Sci 29:959–970CrossRefGoogle Scholar
  44. Polimene L, Archer SD, Butenschön M, Allen JI (this issue) A mechanistic explanation of the Sargasso Sea DMS “summer paradox”. BiogeochemistryGoogle Scholar
  45. Ruggaber R, Dlugi RA, Nakajima T (1994) Modelling of radiation quantities and photolysis frequencies in the troposphere. J Atmos Chem 18(2):171–210CrossRefGoogle Scholar
  46. Saltzman ES, King DB, Holmen K, Leck C (1993) Experimental determination of the diffusion coefficient of dimethylsulfide in water. J Geophys Res Oceans 98:16481–16486CrossRefGoogle Scholar
  47. Simó R, Pedrós-Alió C (1999) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402:396–399CrossRefGoogle Scholar
  48. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83(1–3):245–275CrossRefGoogle Scholar
  49. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320CrossRefGoogle Scholar
  50. Sunda WG, Hardison R, Kiene RP, Bucciarelli E, Harada H (2007) The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications. Aquat Sci 69:341–351CrossRefGoogle Scholar
  51. Tagliabue A, Bopp L, Aumont O (2008) Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition. Biogeosciences 5:11–24CrossRefGoogle Scholar
  52. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson ARJ, Malin G, Steinke M, Johnston AWB (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666–669CrossRefGoogle Scholar
  53. Toole DA, Siegel DA (2004) Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: Closing the loop. Geophys Res Lett. doi: 10.1029/2004GL019581
  54. Uitz J, Claustre H, Morel A, Hooker S (2006) Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J Geophys Res Oceans. doi: 10.1029/2005JC003207
  55. Vallina SM, Simó R (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315:506–508CrossRefGoogle Scholar
  56. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblızek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappe MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72CrossRefGoogle Scholar
  57. Van Wambeke F, Christaki U, Giannakourou A, Moutin T, Souvemerzoglou K (2002) Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microbiol Ecol 43:119–133CrossRefGoogle Scholar
  58. Van Wambeke F, Bonnet S, Moutin T, Raimbault P, Alarcon G, Guieu C (2008) Factors limiting heterotrophic bacterial production in the southern Pacific Ocean. Biogeosciences 5:833–845CrossRefGoogle Scholar
  59. Vezina AF (2004) Ecosystem modelling of the cycling of marine dimethylsulfide: a review of current approaches and of the potential for extrapolation to global scales. Can J Fish Aquat Sci 61:845–856CrossRefGoogle Scholar
  60. Vila-Costa M, Kiene RP, Simó R (2008) Seasonal variability of the dynamics of dimethylated sulfur compounds in a coastal northwest Mediterranean site. Limnol Oceanogr 53(1):198–211CrossRefGoogle Scholar
  61. Vogt M, Liss PS (2009) Dimethylsulfide and climate. In: Le Quéré C, Saltzman ES (eds) Surface ocean—lower atmosphere processes. Geophysical Monograph Series, vol 198, pp 197–232Google Scholar
  62. Vogt M, Vallina SM, Buitenhuis ET, Bopp L, Le Quéré C (2010) Simulating dimethylsulphide seasonality with the Dynamic Green Ocean Model PlankTOM5. J Geophys Res Oceans. doi: 10.1029/2009JC005529
  63. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Oceans 97:7373–7382CrossRefGoogle Scholar
  64. Wu J, Sunda W, Boyle EA, Karl DM (2000) Phosphate depletion in the Western Atlantic Ocean. Science 289:759–762CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sauveur Belviso
    • 1
  • Italo Masotti
    • 1
  • Alessandro Tagliabue
    • 1
    • 7
  • Laurent Bopp
    • 1
  • P. Brockmann
    • 1
  • Cédric Fichot
    • 2
  • Guy Caniaux
    • 3
  • Louis Prieur
    • 4
  • Joséphine Ras
    • 4
  • Julia Uitz
    • 4
    • 8
  • Hubert Loisel
    • 5
  • David Dessailly
    • 5
  • Séverine Alvain
    • 5
  • Nobue Kasamatsu
    • 6
    • 9
  • Mitsuo Fukuchi
    • 6
  1. 1.IPSL/Laboratoire des Sciences du Climat et de l’EnvironnementCEA/CNRS/UVSQ, UMR 8212, CEN SaclayGif-sur-YvetteFrance
  2. 2.Marine Sciences ProgramUniversity of South Carolina ColumbiaColumbiaUSA
  3. 3.CNRM, GAME, Météo France, CNRSToulouse CedexFrance
  4. 4.Laboratoire d’Océanographie de VillefrancheUniversité Pierre et Marie Curie, CNRS, UMR 7093Villefranche-sur-mer CedexFrance
  5. 5.Laboratoire d’ Océanologie et de GéosciencesUniversité Lille Nord de France, UMR 8187WimereuxFrance
  6. 6.National Institute of Polar Research, Research Organization of Information and SystemsItabashiJapan
  7. 7.Department of OceanographyUniversity of Cape TownCape TownSouth Africa
  8. 8.Marine Physical Lab., Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  9. 9.Tokyo University of Marine Science and TechnologyMinato-kuJapan

Personalised recommendations