, Volume 111, Issue 1–3, pp 273–286 | Cite as

Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland

  • Michael F. Billett
  • Mark H. Garnett
  • Kerry J. Dinsmore
  • Kirstie E. Dyson
  • Frank Harvey
  • Amanda M. Thomson
  • Sirpa Piirainen
  • Pirkko Kortelainen


Isotopic data are increasingly being used to quantify and understand the processes that control the release of carbon (C) from northern peatlands. We used δ13C and 14C measurements to investigate the source and age of different forms of aquatic C (DOC, POC and evasion CO2) released from 2 contrasting (undrained v drained) forested peatland catchments at the end of the winter snowmelt period in boreal E Finland. The δ13CVPDB values of DOC (range −28.3 to −28.8 ‰) were generally more 13C depleted than evasion CO2 (range −22.7 to −31.5 ‰) and showed no clear differences between the pre-flood, flood and post-flood periods. Both forms of C had evidence of bomb-14C (i.e. >100%modern), indicating that they contained substantial quantities of C fixed since the mid AD 1950s. However, DOC was 14C enriched compared to evasion CO2, with 14C concentrations suggesting that, on average, DOC-C was ~5–6 years younger than evasion CO2–C, with the most recently fixed C being released when temperatures were highest. POC was significantly depleted in 14C with conventional (uncalibrated) radiocarbon ages of 805–1135 BP. In contrast to other studies, the isotopic compositions of DOC and evasion CO2 were very similar, suggesting a predominantly single and consistent C source (decomposition of soil organic matter; SOM) during the snowmelt period. Whilst we found no evidence to suggest that old (pre-bomb) C was being released at the end of the winter period, the drained site was associated with more 14C depleted and 13C enriched evasion CO2, suggesting a closer link to the atmospheric CO2 pool. Our isotopic data suggest that the various forms of C released to the aquatic system from these forested Finnish peatlands are closely related, largely unaffected by drainage and (at least in the case of evasion CO2 and DOC) indicate strong connectivity between C cycling in the soil–plant–water system.


Radiocarbon 13Boreal Peatland Carbon dioxide DOC Flux Snowmelt 



We would like to acknowledge the UK Natural Environment Research Council (NERC) for providing financial support for this work and the Finnish Forest Research Institute (METLA) for logistical support and providing data.


  1. Ahtiainen M, Holopainen A-L, Huttunen P (1988) General description of the Nurmes-study. In: Symposium on the hydrology of wetlands in temperate and cold regions, vol 1. Joensuu, Finland 6–8 June 1988. Helsinki. The publications of the Academy of Finland 4/1988: 107–121Google Scholar
  2. Balcarczyl KL, Jones JB, Jaffe R, Maie N (2009) Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94:255–270CrossRefGoogle Scholar
  3. Benner R, Benitez-Nelson B, Kaiser K, Amon RMW (2004) Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys Res Lett 31:L05305. doi: 10.1029/2003GL019251 CrossRefGoogle Scholar
  4. Billett MF, Garnett MH (2010) The isotopic composition of carbon dioxide lost by evasion from surface water to the atmosphere: methodological comparison of a direct and indirect approach. Limnol Oceanog Methods 8:45–53CrossRefGoogle Scholar
  5. Billett MF, Moore TR (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Process 22:2044–2054CrossRefGoogle Scholar
  6. Billett MF, Garnett MH, Hardie SML (2006) A direct method to measure 14CO2 lost by evasion from surface waters. Radiocarbon 48:61–68Google Scholar
  7. Billett MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophys Res Lett 34:L23401. doi: 10.1029/2007GL031797 CrossRefGoogle Scholar
  8. Boutton TW, Wong WW, Hachley DL, Lee LS, Cabrera MP, Klein PD (1983) Comparison of quartz and pyrex tubes for combustion of organic samples for stable isotopes. Anal Chem 55:1832–1833CrossRefGoogle Scholar
  9. Bowling DR, Pataki DE, Randerson RT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40CrossRefGoogle Scholar
  10. Bowling DR, Massman WJ, Shaeffer SM, Burns SP, Monson RK, Williams MW (2009) Biological and physical influences on the carbon isotope content of CO2 in a subalpine forest snowpack, Niwot Ridge, Colorado. Biogeochemistry 95:37–59CrossRefGoogle Scholar
  11. Charman DJ, Aravena R, Bryant CL, Harkness DD (1999) Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland in Dartmoor, southwest England. Geol 27:539–542CrossRefGoogle Scholar
  12. Chasar LS, Chanton JP, Glaser PH, Siegel DI, Rivers JS (2000) Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. Global Biogeochem Cycles 14:1095–1108CrossRefGoogle Scholar
  13. Clymo RS, Bryant CL (2008) Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim Cosmochim Acta 72:2048–2066CrossRefGoogle Scholar
  14. Dinsmore KJ, Billett MF (2008) Continuous measurement and modeling of CO2 losses from a peatland stream during stormflow events. Water Resour Res 44:W12417. doi: 10.1029/2008WR007284 CrossRefGoogle Scholar
  15. Dinsmore KJ, Billett MF, Dyson KE, Harvey F, Thomson AM, Piirainen S, Kortelainen P (in press) Stream water hydrochemistry as an indicator of carbon flow paths in Finnish peatland catchments during a spring snowmelt event. Sci Total Environ. doi: 10.1016/j.scitotenv.2011.07.063
  16. Dyson KE, Billett MF, Dinsmore KJ, Harvey F, Thomson AM, Piirainen S, Kortelainen P (2011) Release of aquatic carbon from two peatland catchments in E. Finland during the spring snow melt event. Biogeochemistry 103:125–142. doi: 10.1007/s10533-010-9452-3 CrossRefGoogle Scholar
  17. Evans CD, Freeman C, Cork LG, Thomas DN, Reynolds B, Billett MF, Garnett MH, Norris D (2007) Evidence against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophys Res Lett 34:L07407. doi: 10.1029/2007GL029431 CrossRefGoogle Scholar
  18. Finnish Statistical Yearbook of Forestry (2009) Peltola A (ed) Finnish Forest Research Institute, Vantaa, p 452Google Scholar
  19. Freeman S, Bishop P, Bryant CL, Cook GT, Dougans A, Ertunc T, Fallick AE, Ganeshram RS, Maden C, Naysmith P, Schnabel C, Scott EM, Summerfield MA, Xu S (2007) The SUERC AMS laboratory after 3 years. Nucl Instr Methods Phys Res B259:66–70CrossRefGoogle Scholar
  20. Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32:L09401. doi: 10.1029/2004GL022025 CrossRefGoogle Scholar
  21. Garnett MH, Stevenson AC (2004) Testing the use of bomb radiocarbon to date the surface layers of blanket peat. Radiocarbon 46:841–851Google Scholar
  22. Goni MA, Yunker MB, Macdonald RW, Eglinton TI (2005) The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar Chem 93:53–73CrossRefGoogle Scholar
  23. Gorham E (1991) Northern peatlands, role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  24. Guo L, MacDonald RW (2006) Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (d13C, D14C, and d15 N) composition of dissolved, colloidal, and particulate phases. Global Biogeochem Cycles 20:GB2011. doi: 10.1029/2005GB002593 CrossRefGoogle Scholar
  25. Hardie SML, Garnett MH, Fallick AE, Rowland AP, Ostle NJ (2005) Carbon dioxide capture using a zeolite molecular sieve sampling system for isotopic studies (13C and 14C) of respiration. Radiocarbon 47:441–451Google Scholar
  26. Hedges JI, Ertel JR, Quay PD, Grootes PM, Richey JE, Devol AH, Farwell GW, Schmidt FW, Salati E (1986) Organic C-14 in the Amazon River System. Science 231:1129–1131CrossRefGoogle Scholar
  27. Humborg C, Mörth CL, Sundbom M, Borg H, Blenckner T, Gieslers R, Ittekkot V (2010) CO2 supersaturation along the aquatic conduit in Swedish wetlands as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol 16:1966–1978CrossRefGoogle Scholar
  28. Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223CrossRefGoogle Scholar
  29. Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Global Biogeochem Cycles 11:627–638CrossRefGoogle Scholar
  30. Kortelainen P, Mattsson T, Finér L, Ahtiainen M, Saukkonen S, Sallantaus T (2006) Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68:453–468CrossRefGoogle Scholar
  31. Latja A, Kurimo H (1988) Temperature changes in the soil and close to the ground on wetlands drained for forestry. In: Symposium on the hydrology of wetlands in temperate and cold regions-vol. 1. Joensuu, Finland 6–8 June 1988. Helsinki. The publications of the Academy of Finland 4/1988:46–51Google Scholar
  32. Laudon H, Köhler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquat Sci 66:223–230CrossRefGoogle Scholar
  33. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon, S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  34. Levin I, Hammer S, Kromer B, Meinhardt F (2008) Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci Total Environ 391:211–216CrossRefGoogle Scholar
  35. Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Ström L, Mikkel P, Tamstorf MP, Christensen TR (2008) Large tundra methane burst during onset of freezing. Nature 456:628–631CrossRefGoogle Scholar
  36. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541CrossRefGoogle Scholar
  37. Palmer SM, Hope D, Billett MF, Dawson JJC, Bryant CL (2001) Sources of organic and inorganic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338CrossRefGoogle Scholar
  38. Rantakari M, Mattsson T, Kortelainen P, Piirainen S, Finér L, Ahtiainen M (2010) Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Sci Total Environ 408:1649–1658CrossRefGoogle Scholar
  39. Raymond PA, Bauer JE (2001a) Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochem 32:469–485CrossRefGoogle Scholar
  40. Raymond PA, Bauer JE (2001b) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409:497–500CrossRefGoogle Scholar
  41. Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycles 21:GB4011. doi: 10.1029/2007GB002934 CrossRefGoogle Scholar
  42. Sarkkola S, Koivusalo H, Laurén A, Kortelainen P, Mattsson T, Palviainen M, Piirainen S, Starr M, Finér L (2009) Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Sci Total Environ 408:92–101CrossRefGoogle Scholar
  43. Schiff SL, Aravena LR, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ (1997) Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: clues from 13C and 14C. Biogeochemistry 36:43–65CrossRefGoogle Scholar
  44. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559CrossRefGoogle Scholar
  45. Serreze MC, Walsh JE, Chappin FS III, Osterkamp TE, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207CrossRefGoogle Scholar
  46. Slota P, Jull AJT, Linick T, Toolin LJ (1987) Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29:303–306Google Scholar
  47. Striegl RG, Michmerhuize CM (1998) Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol Oceanog 43:1519–1529CrossRefGoogle Scholar
  48. Striegl RG, Kortelainen P, Chanton JP, Wickland KP, Bugna GC, Rantakari M (2001) Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnol Oceanog 46:941–945CrossRefGoogle Scholar
  49. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413. doi: 10.1029/2005GL024413 CrossRefGoogle Scholar
  50. Striegl RG, Dornblaser MM, Aiken GR, Wickland KP, Raymond PA (2007) Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resour Res 43:WO2411. doi: 10.1029/2006/WR005201 CrossRefGoogle Scholar
  51. Stuiver M, Polach HA (1977) Reporting of 14C data. Radiocarbon 19:355–363Google Scholar
  52. Turunen J (2008) Changes in Finnish peatland area and carbon storage. In: Korhonen R, Korpela L, Sarkkola S (eds) Finland–Fenland research and sustainable utilisation of mires and peat. Finnish Peatland Society, Helsinki, pp 67–75Google Scholar
  53. Waldron S, Hall AJ, Fallick AE (1999) Enigmatic stable isotope dynamics of deep peat methane. Glob Biogeochem Cycles 13:93–100CrossRefGoogle Scholar
  54. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75CrossRefGoogle Scholar
  55. Walter KM, Chanton JP, Chapin FS, Schuur EAG, Zimov SA (2008) Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages. J Geophys Res: Biogeosci 113:G00A08. doi: 10.1029/2007JG000569 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael F. Billett
    • 1
  • Mark H. Garnett
    • 2
  • Kerry J. Dinsmore
    • 1
  • Kirstie E. Dyson
    • 1
  • Frank Harvey
    • 1
  • Amanda M. Thomson
    • 1
  • Sirpa Piirainen
    • 3
  • Pirkko Kortelainen
    • 4
  1. 1.Centre for Ecology & HydrologyMidlothianUK
  2. 2.NERC Radiocarbon Facility (Environment)East KilbrideUK
  3. 3.Finnish Forest Research InstituteJoensuu Research UnitJoensuuFinland
  4. 4.Finnish Environment InstituteHelsinkiFinland

Personalised recommendations