, Volume 105, Issue 1–3, pp 37–51 | Cite as

Intra and interannual variability in the Madeira River water chemistry and sediment load

  • Nei K. LeiteEmail author
  • Alex V. Krusche
  • Maria V. R. Ballester
  • Reynaldo L. Victoria
  • Jeffrey E. Richey
  • Beatriz M. Gomes


Concentrations of cations (Na+, Ca2+, Mg2+, K+, NH4 +), anions (HCO3 , Cl, NO3 , SO4 2−, PO4 3−) and suspended sediments in the Madeira River water were determined near the city of Porto Velho (RO), in order to assess variation in water chemistry from 2004 to 2007. Calcium and bicarbonate were the dominant cation and anion, respectively. Significant seasonal differences were found, with highest concentrations occurring during the dry season, as expected from the drainage of Andean carbonate-rich substratum. Interannual variations were also observed, but became significant only when annual average discharge was 25% less than normal. Under this atypical discharge condition, bicarbonate was replaced by sulfate, and higher suspended sediment concentrations and loads were also observed. Compared to previously published studies, it appears that no significant changes in water chemistry have occurred during the last 20–30 years, although differences in approaches and sampling designs among this and previous studies may not allow detection of modest changes. The calculated suspended sediment load reported here is close to the values presented elsewhere, reinforcing the relative importance of this river as a sediment supplier for the Amazon Basin. Seasonality has a significant control on the chemistry of Madeira River waters, and severe decrease in discharge due to anthropogenic changes, such as construction of reservoirs or the occurrence of drier years—a plausible consequence of global climate change—may lead to modification in the chemical composition as well in the sediment deliver to the Amazon River.


Amazonia Madeira River Rondonia River water chemistry Suspended sediment 



Funding for this study was provided by FAPESP and Milênio/CNPq (proc. 2003/13172-2, 2008/56238-7 and 420199/2005-5, respectively). Beatriz Machado Gomes and many students from the LBA Project and UNIR/Ji-Paraná provided valuable logistic support. We thank Gustavo Gobet and Alexandra Montebello for assistance with chemical analysis. We also thank CPRM/PVH for providing daily discharge data. The authors extend special thanks to the series editor and two anonymous reviewers for valuable suggestions which significantly improved the manuscript.


  1. Agência Nacional de Águas—ANA (2009) Database. Accessed 1 Mar 2010
  2. Ballester MVR, Victoria DC, Krusche AV, Coburn R, Victoria RL, Richey JE, Logsdon MG, Mayorga E, Matricardi E (2003) A remote sensing/GIS-based physical template to understand the biogeochemistry of the Ji-Parana River Basin (Western Amazonia). Remote Sens Environ 87(4):429–445CrossRefGoogle Scholar
  3. Barthem R, Goulding M, Forsberg B, Cañas C, Ortega H (2003) Aquatic ecology of the Rio Madre de Dios. Scientific bases for Andes–Amazon headwaters conservation. Grafica Biblos SA, LimaGoogle Scholar
  4. Bastos WR, Gomes JPO, Oliveira RC, Almeida R, Nascimento EL, Bernardi JVE, de Lacerda LD, Silveira EG, Pfeiffer WC (2006) Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Sci Total Environ 368(1):344–351CrossRefGoogle Scholar
  5. Bastos WR, Almeida R, Dorea JG, Barbosa AC (2007) Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon). Ecotoxicology 16:341–346CrossRefGoogle Scholar
  6. Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice Hall, Upper Saddle RiverGoogle Scholar
  7. Biggs TW, Dunne T, Martinelli LA (2004) Natural controls and human impacts on stream nutrient concentrations in a deforested region of the Brazilian Amazon Basin. Biogeochemistry 68(2):227–257CrossRefGoogle Scholar
  8. Bonotto DM, da Silveira EG (2003) Preference ratios for mercury and other chemical elements in the Madeira River, Brazil. J S Am Earth Sci 15(8):911–923CrossRefGoogle Scholar
  9. Carbonnel JP, Meybeck M (1975) Quality variations of Mekong River at Phnom-Penh Cambodia, and chemical-transport in Mekong Basin. J Hydrol 27(3–4):249–265CrossRefGoogle Scholar
  10. Dorea JG, Barbosa AC (2007) Anthropogenic impact of mercury accumulation in fish from the Rio Madeira and Rio Negro Rivers (Amazonia). Biol Trace Elem Res 115:243–254CrossRefGoogle Scholar
  11. Drever JI (1997) The geochemistry of natural waters. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. Elbaz-Poulichet F, Seyler P, Maurice-Bourgoin L, Guyot JL, Dupuy C (1999) Trace element geochemistry in the upper Amazon drainage basin (Bolivia). Chem Geol 157:319–334CrossRefGoogle Scholar
  13. Ferreira JR, Devol AH, Martinelli L, Forsberg BR, Victoria R, Richey JE, Mortatti J (1988) Chemical composition of the Madeira River: seasonal trends and total transport. Mitt Geol Paläontol Inst Univ Hambg 66:63–75Google Scholar
  14. Filizola N, Guyot JL (2009) Suspended sediment yields in the Amazon Basin: an assessment using the Brazilian national data set. Hydrol Process 23(22):3207–3215CrossRefGoogle Scholar
  15. Gaillardet J, Dupre B, Allegre CJ, Negrel P (1997) Chemical and physical denudation in the Amazon River Basin. Chem Geol 142(3–4):141–173CrossRefGoogle Scholar
  16. Gibbs RJ (1967) The geochemistry of the Amazon River system: Part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol Soc Am Bull 78:1203–1232CrossRefGoogle Scholar
  17. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090CrossRefGoogle Scholar
  18. Guyot JL, Filizola N, Quintanilla J, Cortez J (1996) Dissolved solids and suspended sediment yields in the Rio Madeira Basin, from the Bolivian Andes to the Amazon. IAHS 236:55–63Google Scholar
  19. Guyot JL, Jouanneau JM, Wasson JG (1999) Characterisation of river bed and suspended sediments in the Rio Madeira drainage basin (Bolivian Amazonia). J S Am Earth Sci 12(4):401–410CrossRefGoogle Scholar
  20. Guyot JL, Jouanneau JM, Soares L, Boaventura GR, Maillet N, Lagane C (2007) Clay mineral composition of river sediments in the Amazon Basin. Catena 71(2):340–356CrossRefGoogle Scholar
  21. Hauer FR, Lamberti GA (2007) Methods in stream ecology. Academic Press, AmsterdamGoogle Scholar
  22. Hem JD (1970) Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey, AlexandriaGoogle Scholar
  23. Horowitz AJ (2003) An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol Process 17:3387–3409CrossRefGoogle Scholar
  24. IBGE Instituto Brasileiro de Geografia e Estatística. Primeiros dados do Censo 2010—Dados de Rondonia. Accessed 21 Dec 2010
  25. Krusche AV, Ballester MVR, Victoria RL, Bernardes MC, Leite NK, Hanada L, Victoria DdC, Toledo AM, Ometto JP, Moreira MZ, Gomes BM, Bolson MA, Gouveia Neto S, Bonelli N, Deegan L, Neill C, Thomas S, Aufdenkampe AK, Richey JE (2005) Efeitos das mudanças do uso da terra na biogeoquímica dos corpos d’água da bacia do rio Ji-Paraná, Rondônia. Acta Amazon 35:197–205Google Scholar
  26. Latrubesse EM, Stevaux JC, Sinhá R (2005) Tropical rivers. Geomorphology 70:187–206CrossRefGoogle Scholar
  27. Leite NK (2004) The biogeochemistry of Ji-Paraná River, Rondonia. Dissertation, University of Sao PauloGoogle Scholar
  28. Liebmann B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14:4308–4318CrossRefGoogle Scholar
  29. Lyons WB, Bird DA (1995) Geochemistry of the Madeira River, Brazil—comparison of seasonal weathering reactions using a mass-balance approach. J S Am Earth Sci 8(1):97–101CrossRefGoogle Scholar
  30. Malm O, Pfeiffer WC, Souza CMM, Reuther R (1990) Mercury pollution due to gold mining in the Madeira River Basin, Brazil. Ambio 19(1):11–15Google Scholar
  31. Marengo JA, Nobre CA, Tomasella J, Oyama MD, De Oliveira GS, De Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516CrossRefGoogle Scholar
  32. Markewitz D, Davidson EA, Figueiredo RDO, Victoria RL, Krusche AV (2001) Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410(6830):802–805CrossRefGoogle Scholar
  33. Martinelli LA, Ferreira JR, Victoria RL, Mortatti J, Forsberg BR, Bonassi JA, Oliveira E, Tancredi AC (1988) Fluxo de nutrientes em alguns rios do estado de Rondônia, bacia do rio Madeira. Acta Limnol Bras 11(2):911–930Google Scholar
  34. Martinelli LA, Victoria RL, Devol AH, Richey JE, Forsberg BR (1989) Suspended sediment load in the Amazon Basin: an overview. Geojournal 19(4):381–389CrossRefGoogle Scholar
  35. Martinelli LA, Forsberg BR, Victoria RL, Devol AH, Mortatti J, Ferreira JR, Bonassi J, De Oliveira E (1993) Suspended sediment load in the Madeira River. Mitt Geol Paläontol Inst Univ Hambg Sonderbd 74:41–54Google Scholar
  36. McClain ME, Victoria RL, Richey JE (2001) The biogeochemistry of the Amazon Basin. Oxford University Press, New YorkGoogle Scholar
  37. Meade RH (1994) Suspended sediments of the modern Amazon and Orinoco Rivers. Quat Int 21:29–39CrossRefGoogle Scholar
  38. Meade RH, Nordin CF Jr, Curtis WF, Rodrigues FMC, Vale CM, Edmond JM (1979) Sediment loads in the Amazon River. Nature 278:161–163CrossRefGoogle Scholar
  39. Meybeck M (1986) Composition chimique naturelle des ruisseaux non pollués en France. Sci Geol Bull 39:3–77Google Scholar
  40. Moreira-Turcq P, Seyler P, Guyot JL, Etcheber H (2003) Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol Process 17(7):1329–1344CrossRefGoogle Scholar
  41. Mortatti J, Probst JL (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon Basin estimated from river water geochemistry: seasonal and spatial variations. Chem Geol 197(1–4):177–196CrossRefGoogle Scholar
  42. Mortatti J, Ferreira JR, Martinelli LA, Victoria RL, Tancredi ACF (1989) Biogeochemistry of the Madeira River Basin. Geojournal 19(4):391–397CrossRefGoogle Scholar
  43. Negrel P, Lachassagne P (2000) Geochemistry of the Maroni River (French Guiana) during the low water stage: implications for water–rock interaction and groundwater characteristics. J Hydrol 237(3–4):212–233CrossRefGoogle Scholar
  44. O’Rourke N, Hatcher L, Stepanski EJ (2005) A step by step approach to using SAS for univariate and multivariate statistics. SAS Institute Inc., CaryGoogle Scholar
  45. Oltman RE (1968) Reconaissance investigation of discharge and water quality of the Amazon River. US Geological Survey. Circular 552. Washington DC, 16 pGoogle Scholar
  46. Pessenda LCR, Ferreira JR, Tancredi ACF, Martinelli LA, Hirata R, Mortatti J (1986) Caracterização química das águas de alguns rios do estado de Rondônia. Acta Limnol Bras 1(2):179–199Google Scholar
  47. Pfeiffer WC, Malm O, Souza CMM, Delacerda LD, Silveira EG, Bastos WR (1991) Mercury in the Madeira River Ecosystem, Rondonia, Brazil. For Ecol Manag 38(3–4):239–245CrossRefGoogle Scholar
  48. Porto MAA, Guimaraes APB, Rogar MM, De Almeida JRC, Castanho Junior C, Cavalcanti MCR, Fonseca DC, Pinto Junior JB (2005) The Madeira Hydroelectric Complex—regional integration and environmental sustainability using bulb type turbines. PCH Noticias & SHP News 27:8–12Google Scholar
  49. Richey JE, Meade RH, Salati E, Devol AH, Nordin CF, Dossantos U (1986) Water discharge and suspended sediment concentrations in the Amazon River 1982–1984. Water Resour Res 22(5):756–764CrossRefGoogle Scholar
  50. Rondônia (2010) Boletim Climatológico de Rondônia, ano 2008. In: Secretaria de Estado do Desenvolvimento Ambiental (SEDAM). Porto Velho, p 28Google Scholar
  51. Roulet M, Lucotte M, Canuel R, Farella N, Goch YGD, Peleja JRP, Guimaraes JRD, Mergler D, Amorim M (2001) Spatio-temporal geochemistry of mercury in waters of the Tapajos and Amazon Rivers, Brazil. Limnol Oceanogr 46(5):1141–1157CrossRefGoogle Scholar
  52. Silveira EG, Bastos WR, Malm O, Bonoto DM (2000) The presence of mercury in bottom sediments and rocks from the Madeira River, Brazil. Geociencias 19(2):283–289Google Scholar
  53. Sioli H (1950) Das wasser im Amazonasgebiet. Forsch Fortschr 26:274–280Google Scholar
  54. Sioli H (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana 1(3):267–277Google Scholar
  55. Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. W. Junk, DordrechtGoogle Scholar
  56. Skirrow G (1975) The dissolved gases—carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic Press, LondonGoogle Scholar
  57. Stallard RF (1980) Major element geochemistry in the Amazon River System. Ph.D. Thesis, Woods Hole Oceanographic Institution. WHOI-80-29, 362 ppGoogle Scholar
  58. Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved-load. J Geophys Res Ocean Atmos 88(Nc14):9671–9688CrossRefGoogle Scholar
  59. Stallard RF, Edmond JM (1987) Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved input. J Geophys Res 92:8293–8302CrossRefGoogle Scholar
  60. Sternberg HO (1975) The Amazon river of Brazil. Franz Steiner Verlag, Wiesbaden (Heft 40)Google Scholar
  61. Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters. Wiley-Interscience, New YorkGoogle Scholar
  62. Tundisi JG (2005) Água no século XXI: Enfrentando a escassez. Rima, Sao CarlosGoogle Scholar
  63. Tundisi JG, Straškraba M (1999) Theoretical reservoir ecology and its applications. Backhuys Publishers, LeidenGoogle Scholar
  64. Williams MR, Filoso S, Martinelli LA, Lara LB, Camargo PB (2001) Precipitation and river water chemistry of the Piracicaba River Basin, Southeast Brazil. J Environ Qual 30(3):967–981CrossRefGoogle Scholar
  65. Zeng N, Yoon JH, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, Neelin JD (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3(1):1–9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nei K. Leite
    • 1
    Email author
  • Alex V. Krusche
    • 1
  • Maria V. R. Ballester
    • 1
  • Reynaldo L. Victoria
    • 1
  • Jeffrey E. Richey
    • 2
  • Beatriz M. Gomes
    • 3
  1. 1.CENAUniversity of São PauloPiracicabaBrazil
  2. 2.University of Washington, School of OceanographySeattleUSA
  3. 3.UNIREstrada do ItapiremaJi-ParanáBrazil

Personalised recommendations