, Volume 107, Issue 1–3, pp 393–408 | Cite as

A novel inhibitory interaction between dimethylsulfoniopropionate (DMSP) and the denitrification pathway

  • C. Magalhães
  • R. P. Kiene
  • A. Buchan
  • A. Machado
  • C. Teixeira
  • W. J. Wiebe
  • A. A. Bordalo


Dimethylsulfoniopropionate (DMSP) is an abundant organic sulfur compound in marine algae and denitrification influences nitrogen availability to primary producers, the key regulators of coastal eutrophication. In this study, we tested the effect of DMSP on the nitrous oxide (N2O) reduction step of denitrification in sediments and biofilms from the Douro and Ave estuaries (NW Portugal) and in pure cultures of a denitrifying bacterium, Ruegeria pomeroyi. N2O accumulation rates were monitored in sediment slurries and bacterial cell suspensions amended with DMSP concentrations ranging from 0 to 5 mM. In these treatments N2O accumulation rates increased linearly with DMSP concentration (R 2 from 0.89 to 0.99, p < 0.001), suggesting an inhibitory effect of DMSP on the nitrous oxide reductase activity. The addition of DMSP to sediments and bacterial culture resulted in accumulation of dimethylsulfide (DMS) as well as N2O. However, no direct inhibition on N2O reductase activity by DMS was observed. Natural concentrations of DMSP in the different estuarine sites were found to be linearly correlated to natural N2O effluxes (R 2 = 0.64, p < 0.001), suggesting that DMSP may negatively affect N2O reductase in situ. This newly identified interaction between DMSP and N2O emissions may have a significant ecological role as the inhibition of the nitrous oxide reduction enhances nitrogen loss via N2O. Since N2O is a powerful greenhouse gas, the results from our study may be important for evaluating climate change scenarios.


Denitrification DMSP Estuarine sediments Nitrogen Ruegeria pomeroyi Organic sulfur 



We thank T. Hollibaugh and S. Joye for their helpful comments in discussing the results presented on this manuscript. This study was funded by the Portuguese Science and Technology Foundation (FCT) through a PosDoc fellowship to C. Magalhães (SFRH/BPD/14929/2004) and a grant to C. Magalhães (PTDC/MAR/098914/2008). RPK and AB acknowledge the support of the NSF through grant OCE-0724017 and OCE-0550485, respectively.

Supplementary material

10533_2010_9560_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4210 kb)


  1. Bange HW, Rapsomanikis S, Andreae MO (1996) Nitrous oxide in coastal waters. Glob Biogeoch Cycles 10:197–207CrossRefGoogle Scholar
  2. Barnard WR, Andreae MO, Iverson RL (1984) Dimethylsulfide and Phaeocystis pouchetii in the southeastern Bering Sea. Cont Shelf Res 3:103–113CrossRefGoogle Scholar
  3. Cantoni GL, Anderson DG (1956) Enzymatic cleavage of dimethylpropiothetin by Polysiphonia Lanosa. J Biol Chem 222:171–177Google Scholar
  4. Casciotti KL, Ward BB (2005) Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol Ecol 52:197–205CrossRefGoogle Scholar
  5. Charlson RJ, Lovelock JE, Andreae MO, Warren SH (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  6. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth, UKGoogle Scholar
  7. Codispoti LA, Christensen JP (1985) Nitrifcation, denitrication and nitrous oxide cycling in the eastern tropical South Pacifc. Ocean Mar Chem 16:277–300CrossRefGoogle Scholar
  8. Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-change gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10:757–767CrossRefGoogle Scholar
  9. Dacey JWH, Wakeham SG, Howes BL (1984) Henry’s Law constants for dimethylsulfide in freshwater and seawater. Geophys Res Lett 11:991–994CrossRefGoogle Scholar
  10. de Jonge VN, van Raaphorst W (1995) Eutrophication of the Dutch Wadden Sea (Western Europe), and estuarine area controlled by the River Rhine. In: McComb AJ (ed) Eutrophic shallow estuaries and lagoons. CRC Press, Boca Raton, pp 129–149Google Scholar
  11. Del Valle D, Kieber DJ, Kiene RP (2007) Depth-dependent fate of biologically-consumed dimethylsulfide in the Sargasso Sea. Mar Chem 103:197–208CrossRefGoogle Scholar
  12. Dickinson RE, Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319:109–115CrossRefGoogle Scholar
  13. Díez S, Lacorte S, Viana P, Barceló D, Bayona JM (2005) Survey of organotin compounds in rivers and coastal environments in Portugal 1999–2000. Environ Pollut 136:525–536CrossRefGoogle Scholar
  14. Gonçalves EPR, Boaventura RAR, Mouvet C (1992) Sediments and aquatic mosses as pollution indicators for heavy metals in the Ave River basin (Portugal). Sci Total Environ 114:7–24CrossRefGoogle Scholar
  15. González J, Kiene RP, Moran M (1999) Transformations of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the Proteobacteria. Appl Environ Microbiol 65:3810–3819Google Scholar
  16. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman JA, Kiene RP, Moran MA (2003) Silibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269CrossRefGoogle Scholar
  17. Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, Wenying Ye, González JM, Mace K, Joye SB, Kiene RP, Whitman WB, Moran MA (2006) Bacterial taxa that limit sulfur flux from the ocean. Science 314:649–652CrossRefGoogle Scholar
  18. Howard EC, Sun S, Biers EJ, Moran MA (2008) Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol 10:2397–2410CrossRefGoogle Scholar
  19. Jickells TD (1998) Nutrient biogeochemistry in the coastal zone. Science 281:217–222CrossRefGoogle Scholar
  20. Jonkers HM, Koopmans GF, van Gemerden H (1998) Dynamics of dimethyl sulfide in a marine microbial mat. Microb Ecol 36:93–100CrossRefGoogle Scholar
  21. Joye SB, Smith SV, Hollibaugh JT, Paerl HW (1996) Estimating denitrification rates in estuarine sediments: a comparison of stoichiometric and acetylene based methods. Biogeochemistry 33:197–215CrossRefGoogle Scholar
  22. Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulphide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington, DC, pp 167–182CrossRefGoogle Scholar
  23. Kiene RP (1988) Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microbiol Ecol 53:71–78CrossRefGoogle Scholar
  24. Kiene RP (1991) Evidence for the biological turnover of thiols in anoxic marine sediments. Biogeochemistry 13:117–135CrossRefGoogle Scholar
  25. Kiene RP (1996a) Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Mar Chem 54:69–83CrossRefGoogle Scholar
  26. Kiene RP (1996b) Microbial cycling of organosulfur gases in marine and freshwater environments. In: Adams D, Seitzinger S, Crill P (eds) Cycling of reduced gases in the hydrosphere. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Mitteilungen. E. Schweitzerbart’sche Verlagsbuchhandlung (Naglele u. Obermiller), Stuttgart, pp 137–151Google Scholar
  27. Kiene RP, Bates TS (1990) Biological removal of dimethyl sulphide from seawater. Nature 345:702–705CrossRefGoogle Scholar
  28. Kiene RP, Linn LJ (2000a) Turnover of dissolved DMSP and its relationship with bacterial production in the Gulf of Mexico. Limnol Oceanogr 45:849–861CrossRefGoogle Scholar
  29. Kiene RP, Linn LJ (2000b) The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geoch Cosmoch Acta 64:797–2810CrossRefGoogle Scholar
  30. Kiene RP, Service SK (1991) Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. Mar Ecol Prog Ser 76:1–11CrossRefGoogle Scholar
  31. Kiene RP, Taylor BF (1988) Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl Environ Microbiol 54:2208–2212Google Scholar
  32. Kiene RP, Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53:2426–2434Google Scholar
  33. Kiene RP, Linn LJ, González J, Moran MA, Bruton JA (1999) Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine. Bacterioplankton 65:4549–4558Google Scholar
  34. Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224CrossRefGoogle Scholar
  35. Kieskamp WM, Lohse L, Epping E, Helder W (1991) Seasonal variation in denitrifcation rates and nitrous oxide fluxes in intertidal sediments of the western Wadden Sea. Mar Ecol Prog Ser 72:145–151CrossRefGoogle Scholar
  36. Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53Google Scholar
  37. Kirst GO, Wolff CH, Nothnagel J, Wanzek M, Ulmke R (1991) Dimethyl-sulfonioipropionate (DMSP) in ice algae and its possible biological role. Mar Chem 35:381–388CrossRefGoogle Scholar
  38. Lawrence MG (1993) An empirical analysis of the strength of the phytoplankton-dimethylsulfide-cloud-climate feedback cycle. J Geophys Res 98:20663–20673CrossRefGoogle Scholar
  39. Magalhães C, Bordalo AA, Wiebe WJ (2002) Temporal and spatial patterns of intertidal sediment-water nutrient and oxygen fluxes in the Douro River estuary, Portugal. Mar Ecol Prog Ser 233:55–71CrossRefGoogle Scholar
  40. Magalhães CM, Wiebe WJ, Joye SB, Bordalo AA (2005a) Inorganic nitrogen dynamics in intertidal rocky biofilms and sediments of the Douro River estuary (Portugal). Estuaries 28:592–606CrossRefGoogle Scholar
  41. Magalhães C, Joye SB, Moreira R, Wiebe WJ, Bordalo AA (2005b) Salinity and inorganic effects on nitrification and denitrification rates in intertidal sediments and rocky biofilms. Wat Res 39:1783–1794CrossRefGoogle Scholar
  42. Magalhães C, Teixeira C, Teixeira R, Machado A, Azevedo I, Bordalo AA (2008) Dissolved organic and inorganic carbon and nitrogen dynamics in the Douro River estuary, Portugal. Ciencias Marinas 34:271–282Google Scholar
  43. Mopper K, Taylor BF (1986) Biogeochemical cycling of sulfur: thiols in marine sediments. In: Sohn M (ed) Organic marine geochemistry. American Chemical Society symposium series no. 305. American Chemical Society, Washington, D.C., pp 324–339Google Scholar
  44. Moran MA, Buchan A, Gonzáléz JM, Heidelberg JF, Henriksen J, Whitman WB, Kiene RP, Eisen JA, King G, Belas MR, Fuqua C, Rahe E, Sheldon W, Ye W, Carlton J, Brinkac L, Lewis M, Johri S, Weaver B, Rasko D, Paulsen I, Ren Q, Ward N (2004) Genome sequence from an ecologically significant marine bacterial taxon. Nature 432:910–913CrossRefGoogle Scholar
  45. Mucha APM, Vasconcelos TSD, Bordalo AA (2003) Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environ Pollut 121:169–180CrossRefGoogle Scholar
  46. Nedwell DB, Shabbeer MT, Harrison RM (1994) Dimethyl sulphide in North Sea waters and sediments. Est Coast Shelf Sci 39:209–217CrossRefGoogle Scholar
  47. Nixon SW (1981) Remineralization and nutrient cycling in coastal marine ecosystems. In: Neilson BJ, Cronin LE (eds) Estuaries and nutrients. Humana Press, Clifton, NJ, pp 111–138CrossRefGoogle Scholar
  48. Nixon SW, Granger SL, Nowicki BL (1995) An assessment of the annual mass balance of carbon, nitrogen, and phosphorus in Narragansett Bay. Biogeochemistry 31:15–61CrossRefGoogle Scholar
  49. Ogilvie B, Nedwell DB, Harrison RM, Robinson A, Sage A (1997) High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the River Colne estuary (United Kingdom). Mar Ecol Prog Ser 150:217–228CrossRefGoogle Scholar
  50. Otte ML, Wilson G, Morris JT, Moran BM (2004) Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. J Exp Bot 55:1919–1925CrossRefGoogle Scholar
  51. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  52. Poth M, Focht DD (1985) Nitrogen-15 kinetic analysis of nitrous oxide production by Nitrosomonas europaea: an examination of nitrifierdenitrification. Appl Environ Microbiol 49:1134–1141Google Scholar
  53. Przyjazny A, Janicki WA, Chrzanowski W, Staszewski R (1983) Headspace gas chromatographic determination of distribution coefficients of selected organosulfur compounds and their dependence on some parameters. J Chromatogr 280:249–260CrossRefGoogle Scholar
  54. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depliting substance emitted in the 21st century. Science 326:123–125CrossRefGoogle Scholar
  55. Reed RH (1983) Measurement and osmotic significance of P dimethylsulfoniopropionate in marine macroalgae. Mar Biol Lett 34:173–181Google Scholar
  56. Ritchie GAF, Nicholas DJ (1972) Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochemistry 126:1181–1191Google Scholar
  57. Robinson AD, Nedwell DB, Harrison RM, Ogilvie BG (1998) Hypernutrified estuaries as sources of N2O emission to the atmosphere: the estuary of the River Colne, Essex, UK. Mar Ecol Progr Ser 164:58–71CrossRefGoogle Scholar
  58. Ryther J, Dunstan W (1971) Nitrogen, phosphorus, and eutrophication in coastal marine environment. Science 171:1008–1013CrossRefGoogle Scholar
  59. Schäfer H (2007) Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol 73:2580–2591CrossRefGoogle Scholar
  60. Schlessinger WH (1997) Biogeochemistry: analysis of global change. Academic Press, San Diego, CAGoogle Scholar
  61. Seiler W, Conrad R (1987) Contribution of tropical ecosystems to global budgets of trace gasses, especially CH4, H2, CO, and N2O. In: Dickinson RE (ed) Geophysiology of Amazonia. Vegetation and climate interactions. John Wiley and Sons, New York, pp 133–160Google Scholar
  62. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecossistems: ecological and geochemical significance. Limnol Oceanogr 33:702–724CrossRefGoogle Scholar
  63. Seitzinger SP (2000) Scaling up: site-specific measurements to global-scale estimates of denitrification. In: Hobbie JE (ed) Estuarine science: a synthetic approach to research and practice. Island Press, Washington, DC, pp 211–241Google Scholar
  64. Seitzinger SP, Nixon SW (1983) Eutrophication and the rate of denitrifcation and N2O production in coastal marine sediments. Limnol Oceanogr 30:1332–1339CrossRefGoogle Scholar
  65. Seitzinger SP, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090CrossRefGoogle Scholar
  66. Senga Y, Mochida K, Fukumori R, Okamoto N, Seike Y (2006) N2O accumulation in estuarine and coastal sediments: the influence of H2S on dissimilatory nitrate reduction. Est Coast Shelf Sci 67:231–238CrossRefGoogle Scholar
  67. Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1999) Sediments monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311–323CrossRefGoogle Scholar
  68. Sørensen J, Tiedje JM, Firestone RB (1980) Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Appl Environ Microbiol 39:105–108Google Scholar
  69. Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197CrossRefGoogle Scholar
  70. Stefels J, van Boekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystls sp. Mar Ecol Prog Ser 97:11–18CrossRefGoogle Scholar
  71. Stow C, Walker J, Cardoch L, Spence P, Geron C (2005) N2O emissions from streams in the Neuse River watershed, North Carolina. Environ Sci Technol 39:6999–7004CrossRefGoogle Scholar
  72. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Board Can, 167Google Scholar
  73. Sunda WG, Kieber DJ, Kiene RP et al (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320CrossRefGoogle Scholar
  74. Sundback K, Miles A, Hulth S, Pihl L, Engstrom P, Selander E, Svenson A (2003) Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays. Mar Ecol Prog Ser 246:115–126CrossRefGoogle Scholar
  75. Taylor BF, Gilchrist DC (1991) New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl Environ Microbiol 57:3581–3584Google Scholar
  76. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson ARJ, Malin G, Steinke M, Johnston AWB (2007) Structural and regulatory genes required to make the gas dimethyl sulphide in bacteria. Science 315:665–669CrossRefGoogle Scholar
  77. Todd JD, Curson ARJ, Dupont CL, Nicholson P, Johnston AWB (2009) The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol 11:1376–1385CrossRefGoogle Scholar
  78. Trimmer M, Nedwell DB, Sivyer DB, Malcolm SJ (2000) Seasonal organic mineralization and denitrifcation in intertidal sediments and is relationship to the abundance of Enteromorpha sp. and Ulva sp. Mar Ecol Prog Ser 203:67–80CrossRefGoogle Scholar
  79. Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM (1988) The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol Oceanogr 33:364–375CrossRefGoogle Scholar
  80. Tyler AC, McGlathery KJ, Anderson IC (2001) Macroalgae mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Est Coast Shelf Sci 53:155–168CrossRefGoogle Scholar
  81. Vallina SM, Simó R (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315:506–508CrossRefGoogle Scholar
  82. van Duyl FC, Gieskes WWC, Kop AJ, Lewis WE (1998) Biological control of short-term variations in the concentration of DMSP and DMS during a Phaecystis spring bloom. J Sea Res 40:221–231CrossRefGoogle Scholar
  83. Vieira MEC, Bordalo AA (2000) The Douro estuary (Portugal): a mesotidal salt wedge. Oceanol Acta 23:585–594CrossRefGoogle Scholar
  84. Vila-Costa M, Del Valle D, Gonzalez JM, Slezak D, Kiene RP, Sanchez O, Simó R (2006) Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria. Environ Microbiol 8:2189–2200CrossRefGoogle Scholar
  85. Visscher PT, van Gemerden H (1991) Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol 57:3237–3242Google Scholar
  86. White RH (1982) Analysis of dimethylsulfonium compounds in marine algae. J Mar Res 40:529–536Google Scholar
  87. Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role pf nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732CrossRefGoogle Scholar
  88. Yang G-P, Tsunogai S, Watanabe S (2005) Biogeochemistry of DMSP in the surface microlayer and subsurface seawater of Funka Bay, Japan. J Oceanogr 61:69–78CrossRefGoogle Scholar
  89. Yi H, Lim YW, Chun J (2007) Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57:815–819CrossRefGoogle Scholar
  90. Yoch DC (2002) Dimethylsulfoniopropionate: Its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815CrossRefGoogle Scholar
  91. Yoshinari T, Knowles R (1976) Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Commun 69:705–710Google Scholar
  92. Zar JH (1996) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJ, USAGoogle Scholar
  93. Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2002) Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res 49:3017–3038CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • C. Magalhães
    • 1
  • R. P. Kiene
    • 2
    • 3
  • A. Buchan
    • 4
  • A. Machado
    • 5
  • C. Teixeira
    • 1
    • 5
  • W. J. Wiebe
    • 6
  • A. A. Bordalo
    • 1
    • 5
  1. 1.Laboratory of Hydrobiology, CIMAR/CIIMAR - Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal
  2. 2.Department of Marine SciencesUniversity of South AlabamaMobileUSA
  3. 3.Dauphin Island Sea LabDauphin IslandALUSA
  4. 4.Department of MicrobiologyUniversity of TennesseeKnoxvilleUSA
  5. 5.Laboratory of Hydrobiology, Institute of Biomedical SciencesUniversity of PortoPortoPortugal
  6. 6.Department of Marine SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations