, Volume 103, Issue 1–3, pp 125–142 | Cite as

Release of aquatic carbon from two peatland catchments in E. Finland during the spring snowmelt period

  • Kirstie E. Dyson
  • Michael F. Billett
  • Kerry J. Dinsmore
  • Frank Harvey
  • Amanda M. Thomson
  • Sirpa Piirainen
  • Pirkko Kortelainen


Spring snowmelt in the arctic and boreal regions represents the most significant event in the hydrological year. We measured concentrations and fluxes of different carbon species in 2 small contrasting (control v drained) forested peatland catchments in E. Finland between April and June 2008 and compared these to long-term annual fluxes. Measurements were made using a combination of continuous sensors (CO2, temperature, pH, discharge) and routine spot sampling (DOC, POC, DIC, CO2, CH4, N2O). The highest concentrations of CO2 and CH4 in streamwater were observed under low flow conditions before the spring flood event, reflecting accumulation and downstream release of gaseous C at the end of the winter period. Over the length of the study mean CH4 concentrations were 10× higher in the drained site. The snowmelt event was associated with a dilution of DOC and CO2, with the drained catchment showing a much flashier hydrological response compared to the control site, and post-event, a slower recovery in DOC and CO2 concentrations. Fluxes of all carbon species during the snowmelt event were significant and represented 37–45% of the annual flux. This highlights the challenge of quantifying aquatic C fluxes in areas with large temporal variability and suggests that inability to “capture” the spring snowmelt event may lead to under-estimation of C fluxes in northern regions.


Carbon dioxide DOC Flux Methane Peatland Snowmelt 



We would like to acknowledge the UK Natural Environment Research Council for providing financial support for this work and the Finnish Forest Research Institute (METLA) for logistical support and data.


  1. Ahtiainen M, Huttunen P (1999) Long-term effects of forestry management on water quality and loading in brooks. Boreal Environ Res 4:101–114Google Scholar
  2. Ahtiainen M, Holopainen A-L, Huttunen P (1988) General description of the Nurmes-study. In: Symposium on the hydrology of wetlands in temperate and cold regions, vol 1. Joensuu, Finland 6–8 June 1988, Helsinki. The publications of the Academy of Finland 4/1988, pp 107–121Google Scholar
  3. Algesten G, Sobek S, Bergstrom AK, Agren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Global Change Biol 10:141–147CrossRefGoogle Scholar
  4. Anderson DE, Striegl RG, Stannard DI, Michmerhuize CM, McConnaughey TA, Labaugn JW (1999) Estimating lake-atmosphere CO2 exchange. Limnol Oceanogr 44:988–1001CrossRefGoogle Scholar
  5. Balcarczyl KL, Jones JB, Jaffe R, Maie N (2009) Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94:255–270CrossRefGoogle Scholar
  6. Ball DF (1964) Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J Soil Sci 15:84–92CrossRefGoogle Scholar
  7. Benoy G, Cash K, McCauley E, Wrona F (2007) Carbon dynamics in lakes of the boreal forest under a changing climate. Environ Rev 15:175–189CrossRefGoogle Scholar
  8. Billett MF, Moore TR (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Process 22:2044–2054CrossRefGoogle Scholar
  9. Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem Cycles 18:GB1024. doi: 10.1029/2003GB002058 CrossRefGoogle Scholar
  10. Billett MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophys Res Lett 34:L23401. doi: 10.1029/2007GL031797 CrossRefGoogle Scholar
  11. Buffam I, Laudon H, Seibert J, Mörth CM, Bishop K (2008) Spatial heterogeneity of the spring flood acid pulse in a boreal stream network. Sci Total Environ 407:708–722CrossRefGoogle Scholar
  12. IPCC (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change (2007) The physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  13. Clark JM, Lane SN, Chapman PJ, Adamson JK (2007) Export of dissolved organic carbon from an upland peatland during storm events: implications for flux estimates. J Hydrol 347:438–447CrossRefGoogle Scholar
  14. Cory N, Buffam I, Laudon H, Köhler S, Bishop K (2006) Landscape control of stream water aluminum in a boreal catchment during spring flood. Environ Sci Technol 40:3494–3500CrossRefGoogle Scholar
  15. Dawson JJC, Billett MF, Hope D (2001) Diurnal variations in the carbon chemistry of two acidic upland streams in northeast Scotland. Freshwater Biol 46:1309–1322CrossRefGoogle Scholar
  16. Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon linked to a peatland stream continuum. Biogeochemistry 70:71–92CrossRefGoogle Scholar
  17. Dinsmore KJ, Billett MF (2008) Continuous measurement and modeling of CO2 losses from a peatland stream during stormflow events. Water Resour Res 44:W12417. doi: 10.1029/2008WR007284 CrossRefGoogle Scholar
  18. Dinsmore KJ, Billett MF, Moore TR (2009) Transfer of carbon dioxide and methane through the soil-water-atmosphere system at Mer Bleue peatland, Canada. Hydrol Process 23:330–341CrossRefGoogle Scholar
  19. Dinsmore KJ, Billett MF, Skiba UM, Rees RM, Helfter C (2010) Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biol. doi: 10.1111/j.1365-2486.2009.02119.x
  20. Evans C, Davies TD (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour Res 34:129–138CrossRefGoogle Scholar
  21. Evans M, Warburton J, Yang J (2006) Sediment budgets for eroding blanket peat catchments: global and local implications of upland organic sediment budgets. Geomorphology 79:45–57CrossRefGoogle Scholar
  22. Finér L, Ahtiainen M, Mannerkoski H, Möttönen V, Piirainen S, Seuna P, Starr M (1997) Effects of harvesting and scarification on water and nutrient fluxes; a description of catchments and methods, and results from the pre-treatment calibration period. The Finnish Forest Research Institute, Research Papers 648 ppGoogle Scholar
  23. Finnish Statistical Yearbook of Forestry (2009) In: Peltola A (ed) Finnish Forest Research Institute, Vantaa, 452 ppGoogle Scholar
  24. Hari P, Pumpanen J, Huotari J, Kolari P, Grace J, Vesala T, Ojala A (2008) High-frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes. Limnol Oceanogr Methods 6:347–354Google Scholar
  25. Hlaváčová E, Rulík M, Čáp L, Mach V (2006) Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic. Archiv für Hydrobiologie 165:339–353CrossRefGoogle Scholar
  26. Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Phil Trans Royal Soc A-Math Phys Eng Sci 363:2891–2913CrossRefGoogle Scholar
  27. Holden J, Chapman PJ, Labadz JC (2004) Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog Phys Geog 28:95–123CrossRefGoogle Scholar
  28. Hope D, Billett MF, Milne R, Brown TAW (1997) Exports of organic carbon in British rivers. Hydrol Process 11:325–344CrossRefGoogle Scholar
  29. Hope D, Palmer SM, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857CrossRefGoogle Scholar
  30. Hovi A (1988) Organic carbon dynamics in small brooks before and after forest drainage and clear-cutting. In: Symposium on the hydrology of wetlands in temperate and cold regions, vol 1. Joensuu, Finland 6–8 June 1988, Helsinki. The publications of the Academy of Finland 4/1988, pp 220–231Google Scholar
  31. Hruška J, Laudon H, Johnson CE, Köhler S, Bishop K (2001) Acid/base character of organic acids in a boreal stream during snowmelt. Water Resour Res 37:1043–1056CrossRefGoogle Scholar
  32. Jassal RS, Black TA, Drewitt GB, Navak MD, Gaumont-Guay D, Nesic Z (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agric For Meterol 124:219–236CrossRefGoogle Scholar
  33. Johnson MS, Lehmann J, Couto EG, Filho JPN, Riha SJ (2006) DOC and DIC in flowpaths of Amazonian headwater catchments with hydrologically contrasting soils. Biogeochemistry 81:45–57CrossRefGoogle Scholar
  34. Johnson MS, Billett MF, Dinsmore KJ, Wallin M, Dyson K (2010) Direct in situ measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3:68–78Google Scholar
  35. Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223CrossRefGoogle Scholar
  36. Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301CrossRefGoogle Scholar
  37. Koehler AK, Murphy K, Kiely G, Sottocornola M (2009) Seasonal variation of DOC concentration and annual loss of DOC from an Atlantic blanket bog in South Western Ireland. Biogeochemistry 95:231–242CrossRefGoogle Scholar
  38. Kortelainen P, Saukkonen S (1998) Leaching of nutrients, organic carbon and iron from Finnish forestry land. Water Air Soil Poll 105:239–250CrossRefGoogle Scholar
  39. Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Global Biogeochem Cycles 11:627–638CrossRefGoogle Scholar
  40. Kortelainen P, Mattsson T, Finér L, Ahtiainen M, Saukkonen S, Sallantaus T (2006a) Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68:453–468CrossRefGoogle Scholar
  41. Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen PJ (2006b) Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biol 12:1554–1567CrossRefGoogle Scholar
  42. Latja A, Kurimo H (1988) Temperature changes in the soil and close to the ground on wetlands drained for forestry. In: Symposium on the hydrology of wetlands in temperate and cold regions, vol 1. Joensuu, Finland 6–8 June 1988, Helsinki. The publications of the Academy of Finland 4/1988, pp 46–51Google Scholar
  43. Laudon H, Köhler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquat Sci 66:223–230CrossRefGoogle Scholar
  44. Lepistö A, Andersson L, Arheimer B, Sundblad K (1995) Influence of catchment characteristics, forestry activities and deposition on nitrogen export from small forest catchments. Water Air Soil Poll 84:81–102CrossRefGoogle Scholar
  45. Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Ström L, Mikkel P, Tamstorf MP, Christensen TR (2008) Large tundra methane burst during onset of freezing. Nature 456:628–631CrossRefGoogle Scholar
  46. Mattsson T, Ahtiainen M, Kenttämies K, Haapanen M (2006) Avohakkuun ja ojituksen pitkäaikaisvaikutukset valuma-alueen ravinne- ja kiintoainehuuhtoumiin. In: Kenttämies K, Haapanen M (eds) Metsätalouden vesistökuormitus. MESUVE-hankkeen loppuraportti. Suomen ympäristö, vol 816, pp 73–81 (in Finnish)Google Scholar
  47. Mitchell G, McDonald AT (1995) Catchment characteristization as a tool for upland water quality management. J Environ Manage 44:83–95CrossRefGoogle Scholar
  48. Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Global Change Biol 14:2317–2332CrossRefGoogle Scholar
  49. Rantakari M, Mattsson T, Kortelainen P, Piirainen S, Finér L, Ahtiainen M (2010) Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Sci Total Environ 408:1649–1658CrossRefGoogle Scholar
  50. Roulet N, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biol 13:397–411CrossRefGoogle Scholar
  51. Sallantaus T (1994) Response of leaching from mire ecosystems to changing climate. In: Kanninen M, Heikinheimo P (eds) The Finnish research programme on climate change, Second Prog. Report, Publ. Acad. Finland 1, Helsinki, pp 291–296Google Scholar
  52. Sarkkola S, Koivusalo H, Laurén A, Kortelainen P, Mattsson T, Palviainen M, Piirainen S, Starr M, Finér L (2009) Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Sci Total Environ 408:92–101CrossRefGoogle Scholar
  53. Schiff S, Aravena R, Mewhinney E, Elgood R, Warner B, Dillon P, Trumbore S (1998) Precambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matter. Climatic Change 40:167–188CrossRefGoogle Scholar
  54. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559CrossRefGoogle Scholar
  55. Striegl RG, Michmerhuize CM (1998) Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol Oceanog 43:1519–1529CrossRefGoogle Scholar
  56. Striegl RG, Kortelainen P, Chanton JP, Wickland KP, Bugna GC, Rantakari M (2001) Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnol Oceanog 46:941–945CrossRefGoogle Scholar
  57. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413. doi: 10.1029/2005GL024413 CrossRefGoogle Scholar
  58. Striegl RG, Dornblaser MM, Aiken GR, Wickland KP, Raymond PA (2007) Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resour Res 43:WO2411. doi: 10.1029/2006/WR005201 CrossRefGoogle Scholar
  59. Tang J, Baldocchi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meterol 118:207–220CrossRefGoogle Scholar
  60. Turunen J (2008) Changes in Finnish peatland area and carbon storage. In: Korhonen R, Korpela L, Sarkkola S (eds) Finland—Fenland, research and sustainable utilisation of mires and peat. Finnish Peatland Society, Helsinki, pp 67–75Google Scholar
  61. Walling DE, Webb BW (1985) Estimating the discharge of contaminants to coastal waters by rivers: some cautionary comments. Marine Poll Bull 16:488–492CrossRefGoogle Scholar
  62. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75CrossRefGoogle Scholar
  63. Walter KM, Chanton JP, Chapin FS, Schuur EAG, Zimov SA (2008) Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages. J Geophys Res Biogeosci 113:GA00A08. doi: 10.1029/2007JG000569 CrossRefGoogle Scholar
  64. Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34:12402. doi: 10.1029/2007GL030216 CrossRefGoogle Scholar
  65. Wetzel RG, Likens GE (1991) Limnological analysis, 2nd edn. Springer, New YorkGoogle Scholar
  66. Worrall F, Gibson HS, Burt TP (2007) Modelling the impact of drainage and drain-blocking on dissolved organic carbon release from peatlands. J Hydrol 338:15–27CrossRefGoogle Scholar
  67. Worrall F, Burt TP, Rowson JG, Warburton J, Adamson JK (2009) The multi-annual carbon budget of a peat-covered catchment. Sci Total Environ 407:4084–4094CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kirstie E. Dyson
    • 1
  • Michael F. Billett
    • 1
  • Kerry J. Dinsmore
    • 1
  • Frank Harvey
    • 1
  • Amanda M. Thomson
    • 1
  • Sirpa Piirainen
    • 2
  • Pirkko Kortelainen
    • 3
  1. 1.Centre for Ecology and HydrologyMidlothianUK
  2. 2.Finnish Forest Research Institute, Joensuu Research UnitJoensuuFinland
  3. 3.Finnish Environment InstituteHelsinkiFinland

Personalised recommendations