, Volume 94, Issue 2, pp 141–162 | Cite as

The chemical character and burial of phosphorus in shallow coastal sediments in the northeastern Baltic Sea

  • Kaarina Lukkari
  • Mirja Leivuori
  • Henry Vallius
  • Aarno Kotilainen


The chemical composition and vertical distribution of sediment phosphorus (P) in shallow coastal sediments of the northeastern Baltic Sea (BS) were characterized by sequential extraction. Different P forms were related to chemical and physical properties of the sediments and the chemistry of pore water and near-bottom water. Sediment P composition varied among the sampling sites located in the Archipelago Sea (AS) and along the northern coast of the Gulf of Finland (GoF): the organic rich sites were high in organic P (OP), while apatite-P dominated in the area affected by sediment transportation. Although the near-bottom water was oxic, the sediments released P. Release of P was most pronounced at the site with high sediment OP and reduced conditions in the sediment-water interface, indicating that P had its origins in organic sources as well as in reducible iron (Fe) oxyhydroxides. The results suggest that even though these coastal areas are shallow enough to lack salinity stratification typical for the brackish BS, they are vulnerable to seasonal oxygen (O2) depletion and P release because of their patchy bottom topography, which restricts mixing of water. Furthermore, coastal basins accumulate organic matter (OM) and OP, degradation of which further diminishes O2 and creates the potential for P release from the sediment. In these conditions, an abundance of labile OP may cause marked efflux of P from sediment reserves in the long-term.


Baltic Sea Coastal sea Fractionation Organic matter Phosphorus Sediment 



Financial support was received from the Ministry of the Environment, the Kone Foundation, the Finnish Institute of Marine Research (FIMR), and the Maj and Tor Nessling Foundation. We thank the personnel of the laboratory of the FIMR, the Institute for Environmental Research (University of Jyväskylä), and GTK for chemical determinations. We are indebted to Jyrki Hämäläinen, Kimmo Alvi, and Boris Winterhalter from GTK for help in sediment descriptions and echo sounding during cruises of the r/v Aranda, and Pekka Marttila, Erkki Lintunen and Tiina Helminen for help during cruises of the r/v Kaita. We thank Kalervo Mäkelä and Hannu Haahti from FIMR for the pore water data and the nutrient flux determinations. We thank the personnel of the r/v Aranda for assistance during cruises, and Helinä Hartikainen for comments on the manuscript. Advice on statistical analysis was received from Ville Hallikainen, Risto Häkkinen, Jaakko Heinonen, and Juha Hyvönen from the Finnish Forest Research Institute. This study was part of a project within the SEGUE consortium (Searching for protection tools for the eutrophied GoF—Integrated use of research and modelling tools) carried out at the FIMR, the Finnish Environment Institute, and the University of Helsinki. SEGUE is part of the Baltic Sea Research Programme of the Academy of Finland.


  1. Ahlgren J, Tranvik L, Gogoll A, Waldebäck M, Markides K, Rydin E (2005) Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR. Environ Sci Technol 39:867–872. doi: 10.1021/es049590h CrossRefGoogle Scholar
  2. Aigars J (2001) Seasonal variations in phosphorus species in the surface sediments of the Gulf of Riga, Baltic Sea. Chemosphere 45:827–834. doi: 10.1016/S0045-6535(01)00121-7 CrossRefGoogle Scholar
  3. Alenius P, Myrberg K, Nekrasov A (1998) The physical oceanography of the Gulf of Finland: a review. Boreal Environ Res 3(2):97–125Google Scholar
  4. Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In: Blackburn TH, Sørensen J (eds) Nitrogen cycling in coastal marine environments. Wiley, Chichester, pp 301–338Google Scholar
  5. Anderson LD, Delaney ML, Faul KL (2001) Carbon to phosphorus ratios in sediments: implications for nutrient cycling. Global Biogeochem Cycles 15(1):65–79. doi: 10.1029/2000GB001270 CrossRefGoogle Scholar
  6. Anschutz P, Zhong S, Sundby B, Mucci A, Gobeil C (1998) Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnol Oceanogr 43(1):53–64Google Scholar
  7. Balzer W (1986) Forms of phosphorus and its accumulation in coastal sediments of Kieler Bucht. Ophelia 26:19–35Google Scholar
  8. Bender M, Martin W, Hess J, Sayles F, Ball L, Lambert C (1987) A whole-core squeezer for interfacial pore-water sampling. Limnol Oceanogr 32(6):1214–1225Google Scholar
  9. Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23Google Scholar
  10. Berner RA, Ruttenberg KC, Ingall ED, Rao J-L (1993) The nature of phosphorus burial in modern marine sediments. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P and S biogeochemical cycles and global change: NATO ASI series, vol 14. Springer, Berlin, pp 365–378Google Scholar
  11. Bonsdorff E, Blomqvist EM, Mattila J, Norkko A (1997) Coastal eutrophication: causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuar Coast Shelf Sci 44:63–72CrossRefGoogle Scholar
  12. Boström B, Jansson M, Forsberg C (1982) Phosphorus release from lake sediments. Arch Hydrobiol Beih Ergebn Limnol 18:5–59Google Scholar
  13. Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341:316–318. doi: 10.1038/341316a0 CrossRefGoogle Scholar
  14. Carman R (1998) Burial pattern of carbon, nitrogen and phosphorus in the soft bottom sediments of the Baltic Sea. Vie Milieu 48(4):229–241Google Scholar
  15. Carman R, Jonsson P (1991) Distribution patterns of different forms of phosphorus in some surficial sediments of the Batic Sea. Chem Geol 90:91–106. doi: 10.1016/0009-2541(91)90036-Q CrossRefGoogle Scholar
  16. Carman R, Aigars J, Larsen B (1996) Carbon and nutrient geochemistry of the surface sediments of the Gulf of Riga, Baltic Sea. Mar Geol 134:57–76. doi: 10.1016/0025-3227(96)00033-3 CrossRefGoogle Scholar
  17. Celi L, Lamacchia S, Marsan FA, Barberis E (1999) Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena. Soil Sci 164(8):574–585. doi: 10.1097/00010694-199908000-00005 CrossRefGoogle Scholar
  18. Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 84:133–144. doi: 10.1097/00010694-195708000-00005 CrossRefGoogle Scholar
  19. Coey JMD, Schindler DW, Weber F (1974) Iron compounds in lake sediments. Can J Earth Sci 11:1489–1493Google Scholar
  20. Conley DJ, Stockenberg A, Carman R, Johnstone RW, Rahm L, Wulff F (1997) Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 45:591–598. doi: 10.1006/ecss.1997.0246 CrossRefGoogle Scholar
  21. Delaney ML (1998) Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochem Cycles 12(4):563–572. doi: 10.1029/98GB02263 CrossRefGoogle Scholar
  22. Drever JI (2002) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice Hall, New Jersey, p 436Google Scholar
  23. Edlund G, Carman R (2001) Distribution and diagenesis of organic and inorganic phosphorus in sediments of the Baltic proper. Chemosphere 45:1053–1061. doi: 10.1016/S0045-6535(01)00155-2 CrossRefGoogle Scholar
  24. Einsele W (1936) Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch Hydrobiol 29:664–686Google Scholar
  25. Einsele W (1938) Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch Hydrobiol Planktonkd 33:361–387Google Scholar
  26. Emeis K-C, Struck U, Leipe T, Pollehne F, Kunzendorf H, Christiansen C (2000) Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years–relevance to P regeneration rates and the phosphorus cycle. Mar Geol 167:43–59. doi: 10.1016/S0025-3227(00)00015-3 CrossRefGoogle Scholar
  27. Frankowski L, Bolałek J, Szostek A (2002) Phosphorus in bottom sediments of Pomeranian Bay (Southern Baltic-Poland). Estuar Coast Shelf Sci 54:1027–1038. doi: 10.1006/ecss.2001.0874 CrossRefGoogle Scholar
  28. Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: aprimer on the phosphate buffer mechanism. Limnol Oceanogr 33(4–2):649–668CrossRefGoogle Scholar
  29. Grasshoff K (1983) Determination of oxygen. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis, 2nd edn. Verlag Chemie Gmbh, Weinheim, pp 61–72Google Scholar
  30. Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd edn. Verlag Chemie Gmbh, Weinheim, pp 159–228Google Scholar
  31. Hartikainen H (1979) Phosphorus and its reactions in terrestrial soils and lake sediments. J Sci Agric Soc Finl 51(8):537–624Google Scholar
  32. HELCOM (2003) The Baltic marine environment 1999–2002. Baltic Sea environment proceedings no. 87. Erweko Painotuote Oy, Helsinki, p 47Google Scholar
  33. Hieltjes AHM, Lijklema L (1980) Fractionation of inorganic phosphates in calcareous sediments. J Environ Qual 9(3):405–407Google Scholar
  34. Hietanen S, Laine AO, Lukkari K (2007) The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics. J Exp Mar Biol Ecol 352:89–102. doi: 10.1016/j.jembe.2007.07.018 CrossRefGoogle Scholar
  35. Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215:1459–1461. doi: 10.1038/2151459a0 CrossRefGoogle Scholar
  36. Hupfer M, Rübe B, Schmieder P (2004) Origin and diagenesis of polyphosphate in lake sediments: a 31P-NMR study. Limnol Oceanogr 49(1):1–10Google Scholar
  37. Hyacinthe C, Van Cappellen P (2004) An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Mar Chem 91:227–251. doi: 10.1016/j.marchem.2004.04.006 CrossRefGoogle Scholar
  38. Ingall E, Clark L (1998) Redox-dependent phosphorus cycling: microbial and abiotic processes. Mineral Mag 62A:677–678. doi: 10.1180/minmag.1998.62A.2.23 CrossRefGoogle Scholar
  39. Ingall E, Jahnke R (1994) Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim Cosmochim Acta 58(11):2571–2575. doi: 10.1016/0016-7037(94)90033-7 CrossRefGoogle Scholar
  40. Ingall ED, Bustin RM, Van Cappellen P (1993) Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim Cosmochim Acta 57:303–316. doi: 10.1016/0016-7037(93)90433-W CrossRefGoogle Scholar
  41. Jensen HS, Thamdrup B (1993) Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59. doi: 10.1007/BF00050721 CrossRefGoogle Scholar
  42. Jensen HS, Mortensen PB, Andersen FØ, Rasmussen E, Jensen A (1995) Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol Oceanogr 40(5):908–917Google Scholar
  43. Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22(5):814–832CrossRefGoogle Scholar
  44. Kamp-Nielsen L (1992) Benthic-pelagic coupling of nutrient metabolism along an estuarine eutrophication gradient. Hydrobiologia 235/236:457–470. doi: 10.1007/BF00026234 CrossRefGoogle Scholar
  45. Kankaanpää H, Vallius H, Sandman O, Niemistö L (1997) Determination of recent sedimentation in the Gulf of Finland using 137-Cs. Oceanol Acta 20(6):823–836Google Scholar
  46. Kemp ALW (1971) Organic carbon and nitrogen in the surface sediments of Lakes Ontario, Erie and Huron. J Sediment Petrol 41(2):537–548Google Scholar
  47. Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerström M, Korhonen J (2001) Geological map of the Fennoscandian shield, scale 1:2,000,000. Geological Surveys of Finland, Norway, and Sweden and the Ministry of Natural Resources of Russia. Espoo, Trondheim, Uppsala, MoscowGoogle Scholar
  48. Koroleff F (1983) Determination of phosphorus. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis, 2nd edn. Verlag Chemie Gmbh, Weinheim, pp 125–142Google Scholar
  49. Koski-Vähälä J, Hartikainen H, Tallberg P (2001) Phosphorus mobilization from various sediment pools in response to increased pH and silicate concentration. J Environ Qual 30:546–552CrossRefGoogle Scholar
  50. Kotilainen A, Vallius H, Ryabchuk D (2007) Seafloor anoxia and modern laminated sediments in coastal basins of the eastern Gulf of Finland, Baltic Sea. In: Vallius H (ed) Holocene sedimentary environment and sediment geochemistry of the eastern Gulf of Finland, Baltic Sea. Geological Survey of Finland, Special Paper 45, Espoo, pp 49–62Google Scholar
  51. Krom MD, Berner RA (1980) Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25(5):797–806Google Scholar
  52. Krom MD, Berner RA (1981) The diagenesis of phosphorus in a nearshore marine sediment. Geochim Cosmochim Acta 45:207–216. doi: 10.1016/0016-7037(81)90164-2 CrossRefGoogle Scholar
  53. Kullenberg G (1981) Physical oceanography. In: Vopio A (ed) The Baltic Sea. Elsevier Oceanography Series, 30, Netherlands, pp 135–181Google Scholar
  54. Kyzyurov V, Mikheev Y, Niemistö L, Winterhalter B, Häsänen E, Ilius E (1994) Shipboard determination of deposition rates of recent sediments based on Chernobyl derived Cesium-137. Baltica 8:64–67Google Scholar
  55. Lee GF, Sonzogni WC, Spear RD (1977) Significance of oxic vs. anoxic conditions for Lake Mendota sediment phosphorus release. In: Golterman HL (ed) Interactions between sediments and fresh water. Dr W Junk BV, The Hague, pp 294–306Google Scholar
  56. Lehtoranta J (1998) Net sedimentation and sediment-water nutrient fluxes in the eastern Gulf of Finland (Baltic Sea). Vie Milieu 48(4):341–352Google Scholar
  57. Leivuori M (2000) Distribution and accumulation of metals in sediments of the northern Baltic Sea. Finnish Institute of Marine Research—contributions, no. 2. Dissertation, University of HelsinkiGoogle Scholar
  58. Lopez P (2004) Spatial distribution of sedimentary phosphorus pools in a Mediterranean coastal lagoon ‘Albufera d’es Grau’ (Minorca Island, Spain). Mar Geol 203:161–176. doi: 10.1016/S0025-3227(03)00333-5 CrossRefGoogle Scholar
  59. Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283. doi: 10.1016/0012-8252(92)90001-A CrossRefGoogle Scholar
  60. Louchouarn P, Lucotte M, Duchemin E, de Vernal A (1997) Early diagenetic processes in recent sediments of the Gulf of St-Lawrence: phosphorus, carbon and iron burial rates. Mar Geol 139:181–200. doi: 10.1016/S0025-3227(96)00110-7 CrossRefGoogle Scholar
  61. Lukkari K, Hartikainen H, Leivuori M (2007) Fractionation of sediment phosphorus revisited. I: fractionation steps and their biogeochemical basis. Limnol Oceanogr Methods 5:433–444Google Scholar
  62. Lukkari K, Leivuori M, Hartikainen H (2008) Vertical distribution and chemical character of sediment phosphorus in two shallow estuaries in the Baltic Sea. Biogeochemistry 90(2):171–191. doi: 10.1007/s10533-008-9243-2 CrossRefGoogle Scholar
  63. Lukkari K, Leivuori M, Kotilainen A (submitted) The chemical character and behaviour of phosphorus in poorly oxygenated sediments from open sea to organic-rich inner bay in the Baltic SeaGoogle Scholar
  64. Mäkelä K, Tuominen L (2003) Pore water nutrient profiles and dynamics in soft bottoms of the northern Baltic Sea. Hydrobiologia 492:43–53. doi: 10.1023/A:1024809710854 CrossRefGoogle Scholar
  65. Martens CS, Goldhaber MB (1978) Early diagenesis in transitional sedimentary environments of the White Oak River Estuary, North Carolina. Limnol Oceanogr 23(3):428–441CrossRefGoogle Scholar
  66. Mattila J, Kankaanpää H, Ilus E (2006) Estimation of recent sediment accumulation rates in the Baltic Sea using artificial radionuclides 137Cs and 239, 240Pu as time markers. Boreal Environ Res 11:95–107Google Scholar
  67. Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes, I. J Ecol 29:280–329. doi: 10.2307/2256395 CrossRefGoogle Scholar
  68. Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes, II. J Ecol 30:147–201. doi: 10.2307/2256691 CrossRefGoogle Scholar
  69. Mortimer CH (1971) Chemical exchanges between sediments and water in the Great Lakes–speculations on probable regulatory mechanisms. Limnol Oceanogr 16(2):387–404CrossRefGoogle Scholar
  70. Paludan C, Jensen HS (1995) Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids. Wetlands 15(4):365–373CrossRefGoogle Scholar
  71. Peltovuori T (2006) Phosphorus in agricultural soils of Finland—characterization of reserves and retention in mineral soil profiles. Pro Terra No 26. Dissertation, University of HelsinkiGoogle Scholar
  72. Persson J, Jonsson P (2000) Historical development of laminated sediments–an approach to detect soft sediment ecosystem changes in the Baltic Sea. Mar Pollut Bull 40:122–134. doi: 10.1016/S0025-326X(99)00180-0 CrossRefGoogle Scholar
  73. Petr T (1977) Bioturbation and exchange of chemicals in the mud-water interface. In: Golterman HL (ed) Interactions between sediments and fresh water. Proceedings of an international symposium held at Amsterdam, the Netherlands, September 6–10, 1976. Dr W Junk BV, The Hague. pp 216–226Google Scholar
  74. Pettersson K, Boström B, Jacobsen O-S (1988) Phosphorus in sediments—speciation and analysis. Hydrobiologia 170:91–101Google Scholar
  75. Psenner R, Pucsko R, Sager M (1984) Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Versuch einer Definition ökologisch wichtiger Fraktionen. Fractionation of organic and inorganic phosphorus compounds in lake sediments. An attempt to characterize ecologically important fractions. Arch Hydrobiol Suppl 70(1):111–155Google Scholar
  76. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea: ideas and observations on progress in the study of the seas, vol 2. The composition of sea-water: comparative and descriptive oceanography. Interscience, New York, pp 26–77Google Scholar
  77. Reitzel K, Ahlgren J, Gogoll A, Jensen HS, Rydin E (2006) Characterization of phosphorus in sequential extracts from lake sediments using 31P nuclear magnetic resonance spectroscopy. Can J Fish Aquat Sci 63:1686–1699. doi: 10.1139/F06-070 CrossRefGoogle Scholar
  78. Reitzel K, Ahlgren J, DeBrabandere H, Waldebäck M, Gogoll A, Tranvik L, Rydin E (2007) Degradation rates of organic phosphorus in lake sediment. Biogeochemistry 82:15–28. doi: 10.1007/s10533-006-9049-z CrossRefGoogle Scholar
  79. Ruban V, López-Sánchez JF, Pardo P, Rauret G, Muntau H, Quevauviller P (1999) Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. J Environ Monit 1:51–56. doi: 10.1039/a807778i CrossRefGoogle Scholar
  80. Ruttenberg KC (1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr 37(7):1460–1482CrossRefGoogle Scholar
  81. Ruttenberg KC, Goñi MA (1997) Depth trends in phosphorus distribution and C:N:P ratios of organic matter in Amazon Fan sediments: indices of organic matter source and burial history. In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the ocean drilling program, 1997, scientific results, vol 155. pp 505–517Google Scholar
  82. Ryden JC, Syers JK, Tillman RW (1987) Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric oxide gel. J Soil Sci 38:211–217. doi: 10.1111/j.1365-2389.1987.tb02138.x CrossRefGoogle Scholar
  83. Schnitzer M (1969) Reactions between fulvic acid, a soil humic compound and inorganic soil constituents. Soil Sci Soc Am Proc 33:75–81CrossRefGoogle Scholar
  84. Shukla SS, Syers JK, Williams JDH, Armstrong DE, Harris RF (1971) Sorption of inorganic phosphate by lake sediments. Soil Sci Soc Am Proc 35:244–249Google Scholar
  85. Slomp CP, Epping EHG, Helder W, Van Raaphorst W (1996a) A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J Mar Res 54:1179–1205. doi: 10.1357/0022240963213745 CrossRefGoogle Scholar
  86. Slomp CP, Van der Gaast SJ, van Raaphorst W (1996b) Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar Chem 52:55–73. doi: 10.1016/0304-4203(95)00078-X CrossRefGoogle Scholar
  87. Stepanauskas R, Jørgensen NOG, Eigaard OR, Žvikas A, Tranvik LJ, Leonardson L (2002) Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. Ecol Monogr 72(4):579–597CrossRefGoogle Scholar
  88. Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, p 1022Google Scholar
  89. Suzumura M, Kamatani A (1995) Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments: implications for the phosphorus cycle. Geochim Cosmochim Acta 59(5):1021–1026. doi: 10.1016/0016-7037(95)00006-2 CrossRefGoogle Scholar
  90. Vaalgamaa S, Conley DJ (2008) Detecting environmental change in estuaries: nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 76:45–56. doi: 10.1016/j.ecss.2007.06.007 CrossRefGoogle Scholar
  91. Vallius M (1999) Recent sediments of the Gulf of Finland: an environment affected by the accumulation of heavy metals. Dissertation, Åbo Akademi University, p 43Google Scholar
  92. Vallius H (2006) Permanent seafloor anoxia in coastal basins of the northwestern Gulf of Finland, Baltic Sea. Ambio 35(3):105–108. doi: 10.1579/0044-7447(2006)35[105:PSAICB]2.0.CO;2 CrossRefGoogle Scholar
  93. Van Eck GTM (1982) Forms of phosphorus in particulate matter from the Hollands Diep/Haringvliet, The Netherlands. Hydrobiologia 92:665–681Google Scholar
  94. Virtasalo JJ, Kotilainen AT (2008) Phosphorus forms and reactive iron in lateglacial, postglacial and brackish-water sediments of the Archipelago Sea, northern Baltic Sea. Mar Geol 252:1–12. doi: 10.1016/j.margeo.2008.03.008 CrossRefGoogle Scholar
  95. Virtasalo JJ, Kohonen T, Vuorinen I, Huttula T (2005) Sea bottom anoxia in the Archipelago Sea, northern Baltic Sea—implications for phosphorus remineralization at the sediment surface. Mar Geol 224:103–122. doi: 10.1016/j.margeo.2005.07.010 CrossRefGoogle Scholar
  96. Williams JDH, Mayer T (1972) Effects of sediment diagenesis and regeneration of phosphorus with special reference to Lakes Erie and Ontario. In: Allen HE, Kramer JP (eds) Nutrients in natural waters. Wiley, New York, pp 281–315Google Scholar
  97. Williams JDH, Syers JK, Armstrong DE, Harris RF (1971a) Characterization of inorganic phosphate in noncalcareous lake sediments. Soil Sci Soc Am Proc 35:556–561CrossRefGoogle Scholar
  98. Williams JDH, Syers JK, Shukla SS, Harris RF, Armstrong DE (1971b) Levels of inorganic and total phosphorus in Lake Sediments as related to other sediment parameters. Environ Sci Technol 5(11):1113–1120. doi: 10.1021/es60058a001 CrossRefGoogle Scholar
  99. Williams JDH, Jaquet J-M, Thomas RL (1976) Forms of phosphorus in the surficial sediments of Lake Erie. J Fish Res Board Can 33(3):413–429Google Scholar
  100. Winterhalter B, Flodén T, Ignatius H, Axberg S, Niemistö L (1981) Geology of the Baltic Sea. In: Vopio A (ed) The Baltic Sea. Elsevier oceanography series, 30, Netherlands, pp 1–121Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kaarina Lukkari
    • 1
  • Mirja Leivuori
    • 1
  • Henry Vallius
    • 2
  • Aarno Kotilainen
    • 2
  1. 1.Finnish Institute of Marine ResearchHelsinkiFinland
  2. 2.Geological Survey of FinlandEspooFinland

Personalised recommendations