, Volume 93, Issue 3, pp 271–289 | Cite as

The effects of dissolved organic carbon, acidity and seasonality on metal geochemistry within a forested catchment on the Precambrian Shield, central Ontario, Canada

  • Amanda L. Landre
  • Shaun A. Watmough
  • Peter J. Dillon


Metal pollution, in combination with other environmental stressors such as acid deposition and climate change, may disturb metal biogeochemical cycles. To investigate the influence of dissolved organic carbon, acidity and seasonality on metal geochemistry, this study has described concentrations of 19 metals as they pass through an acidified forested catchment on the Precambrian Shield in south-central Ontario, Canada. Metal, dissolved organic carbon (DOC) and sulphate (SO4 2−) concentrations fluctuate throughout the catchment compartments as the water passes through and interacts with vegetation, soils and bedrock. Relationships among metals, DOC and SO4 2− are most pronounced in compartments where DOC and SO4 2− exhibit high variability, namely in the throughfall, organic horizon soil water, and wetland-draining stream. Metal, DOC and SO4 2− concentrations varied seasonally in the streams, and temporal coherence occurred among metal, DOC and SO4 2− concentrations in the organic horizon soil water and the wetland-draining stream (PC1). In the wetland-draining stream, the highest DOC, Cr, Cu, Fe, Pb, and V concentrations occur in the summer, whereas concentrations of SO4 2− and most other metals peak in the fall after a period of drought. Despite the rural location, provincial water quality objectives for surface water were exceeded for many metals when the peak fall values occurred.


Acidity Dissolved organic carbon Forest catchment Metal Seasonality Wetland 



This work was funded by grants from MITE (Metals in the Environment), the Ontario Ministry of the Environment and NSERC (Natural Sciences and Engineering Research Council of Canada). The invaluable assistance of Joe Findeis, Heather Broadbent, Katrina Epova, Sunday Abiria, Dolly Kothawala, Brad Mills and numerous other students and staff from the Ontario Ministry of Environment is especially noted. This manuscript was greatly improved thanks to the thorough suggestions of three anonymous reviewers.


  1. Adkinson A, Watmough SA, Dillon PJ (2008) Drought-induced metal release from a wetland at Plastic Lake, central Ontario. Can J Fish Aquat Sci 65:834–845. doi: 10.1139/F07-195 CrossRefGoogle Scholar
  2. Artaxo P, Storms H, Bruynseels F, Vangrieken R, Maenhaut W (1988) Composition and sources of aerosols from the Amazon Basin. J Geophys Res-Atmos 93:1605–1615. doi: 10.1029/JD093iD02p01605 CrossRefGoogle Scholar
  3. Bayley SE, Behr RS, Kelly CA (1986) Retention and release of S from a fresh-water wetland. Water Air Soil Pollut 31:101–114. doi: 10.1007/BF00630824 CrossRefGoogle Scholar
  4. Berg T, Royset O, Steinnes E, Vadset M (1995) Atmospheric trace-element deposition—principal component analysis of ICP-MS data from moss samples. Environ Pollut 88:67–77. doi: 10.1016/0269-7491(95)91049-Q CrossRefGoogle Scholar
  5. Bergkvist B (1987) Soil solution chemistry and metal budgets of spruce forest ecosystems in S. Sweden. Water Air Soil Pollut 33:131–154. doi: 10.1007/BF00191383 CrossRefGoogle Scholar
  6. Bergkvist B, Folkeson L, Berggren D (1989) Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems—a literature review. Water Air Soil Pollut 47:217–286. doi: 10.1007/BF00279328 CrossRefGoogle Scholar
  7. Beven KP, Germann P (1982) Macropores and water-flow in soils. Water Resour Res 18:1311–1325. doi: 10.1029/WR018i005p01311 CrossRefGoogle Scholar
  8. Bodek I (ed) (1988) Environmental inorganic chemistry: properties, processes, and estimation methods. Pergamon Press, New YorkGoogle Scholar
  9. Buttle JM, McDonald DJ (2002) Coupled vertical and lateral preferential flow on a forested slope. Water Resour Res 38(5):1060. doi: 10.1029/2001WR000773 CrossRefGoogle Scholar
  10. Buttle JM, Dillon PJ, Eerkes GR (2004) Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield. J Hydrol (Amst) 287:161–177. doi: 10.1016/j.jhydrol.2003.09.022 CrossRefGoogle Scholar
  11. Cabin RJ, Mitchell RJ (2000) To Bonferroni or not to Bonferroni: when and how are the questions. Ecol Soc Am Bull 81:246–248Google Scholar
  12. Christ MJ, David MB (1996) Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biol Biochem 28:1191–1199. doi: 10.1016/0038-0717(96)00120-4 CrossRefGoogle Scholar
  13. Dalva M, Moore TR (1991) Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry 15:1–19. doi: 10.1007/BF00002806 CrossRefGoogle Scholar
  14. Davis JA, Leckie JO (1978) Effects of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ Sci Technol 12:1309–1315. doi: 10.1021/es60147a006 CrossRefGoogle Scholar
  15. Devito KJ (1995) Sulfate mass balances of Precambrian Shield wetlands—the influence of catchment hydrogeology. Can J Fish Aquat Sci 52:1750–1760. doi: 10.1139/f95-767 CrossRefGoogle Scholar
  16. Devito KJ, Dillon PJ (1993) The influence of hydrologic conditions and peat oxia on the phosphorus and nitrogen dynamics of a conifer swamp. Water Resour Res 29:2675–2686. doi: 10.1029/93WR00622 CrossRefGoogle Scholar
  17. Devito KJ, Dillon PJ, LaZerte BD (1989) Phosphorus and nitrogen retention in five Precambrian Shield wetlands. Biogeochemistry 8:185–204. doi: 10.1007/BF00002888 CrossRefGoogle Scholar
  18. Devito KJ, Hill AR, Roulet N (1996) Groundwater-surface water interactions in headwater forested wetlands of the Canadian Shield. J Hydrol (Amst) 181:127–147. doi: 10.1016/0022-1694(95)02912-5 CrossRefGoogle Scholar
  19. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396. doi: 10.1897/1551-5028(2001)020<2383:BLMOTA>2.0.CO;2 CrossRefGoogle Scholar
  20. Dillon PJ, Lazerte BD (1992) Response of the Plastic Lake catchment, Ontario, to reduced sulfur deposition. Environ Pollut 77:211–217. doi: 10.1016/0269-7491(92)90079-P CrossRefGoogle Scholar
  21. Dillon PJ, Molot LA (1990) The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry 11:23–43. doi: 10.1007/BF00000850 CrossRefGoogle Scholar
  22. Dillon PJ, Evans HE, Scholer PJ (1988) The effects of acidification on metal budgets of lakes and catchments. Biogeochemistry 5:201–220. doi: 10.1007/BF02180228 CrossRefGoogle Scholar
  23. Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37:2171–2179. doi: 10.1016/j.soilbio.2005.03.019 CrossRefGoogle Scholar
  24. Drever JI (1988) The geochemistry of natural waters. Prentice Hall, Englewood CliffsGoogle Scholar
  25. Duce RA, Hoffman GL, Zoller WH (1975) Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural? Science 187:59–61. doi: 10.1126/science.187.4171.59 CrossRefGoogle Scholar
  26. Eckhardt BW, Moore TR (1990) Controls on dissolved organic carbon concentrations in stream, southern Quebec. Can J Fish Aquat Sci 47:1537–1544Google Scholar
  27. Eimers MC, Watmough SA, Buttle JM, Dillon PJ (2007) Drought-induced sulphate release from a wetland in south-central Ontario. Environ Monit Assess 127:399–407. doi: 10.1007/s10661-006-9289-3 CrossRefGoogle Scholar
  28. Eimers MC, Watmough SA, Buttle JM, Dillon PJ (2008) Examination of the potential relationship between droughts, sulphate and dissolved organic carbon at a wetland-draining stream. Glob Change Biol 14:938–948. doi: 10.1111/j.1365-2486.2007.01530.x CrossRefGoogle Scholar
  29. Environment Canada (2002) Canadian climate normals and averages 1971–2000. National Climate Data and Information Archive. Available from Cited Jun 15 2007
  30. Ephraim JH (1992) Heterogeneity as a concept in the interpretation of metal-ion binding by humic substances—the binding of zinc by an aquatic fulvic-acid. Anal Chim Acta 267:39–45. doi: 10.1016/0003-2670(92)85004-P CrossRefGoogle Scholar
  31. Froberg M, Berggren D, Bergkvist B, Bryant C, Mulder J (2006) Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry 77:1–23. doi: 10.1007/s10533-004-0564-5 CrossRefGoogle Scholar
  32. Gelinas Y, Schmit JP (1998) Estimation of the bulk atmospheric deposition of major and trace elements to a rural watershed. Atmos Environ 32:1473–1483. doi: 10.1016/S1352-2310(97)00380-4 CrossRefGoogle Scholar
  33. Grybos M, Davranche M, Gruau G, Petitjean P (2007) Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxide reduction? J Colloid Interface Sci 314:490–501. doi: 10.1016/j.jcis.2007.04.062 CrossRefGoogle Scholar
  34. Hinton MJ, Schiff SL, English MC (1997) The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 36:67–88. doi: 10.1023/A:1005779711821 CrossRefGoogle Scholar
  35. Hou H, Takamatsu T, Koshikawa MK, Hosomi M (2005) Trace metals in bulk precipitation and throughfall in a suburban area of Japan. Atmos Environ 39:3583–3595. doi: 10.1016/j.atmosenv.2005.02.035 CrossRefGoogle Scholar
  36. Houle D, Ouimet R, Paquin R, Laflamme JG (1999) Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Can J For Res 29:1944–1957. doi: 10.1139/cjfr-29-12-1944 CrossRefGoogle Scholar
  37. Jeffries DS, Snyder WR (1981) Atmospheric deposition of heavy-metals in central Ontario. Water Air Soil Pollut 15:127–152. doi: 10.1007/BF00161248 CrossRefGoogle Scholar
  38. Kaiser K, Guggenberger G, Haumaier L, Zech W (2002) The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33:307–318. doi: 10.1016/S0146-6380(01)00162-0 CrossRefGoogle Scholar
  39. Kirkwood DE, Nesbitt HW (1991) Formation and evolution of soils from an acidified watershed—Plastic Lake, Ontario, Canada. Geochim Cosmochim Acta 55:1295–1308. doi: 10.1016/0016-7037(91)90308-R CrossRefGoogle Scholar
  40. Lawlor AJ, Tipping E (2003) Metals in bulk deposition and surface waters at two upland locations in northern England. Environ Pollut 121:153–167. doi: 10.1016/S0269-7491(02)00228-2 CrossRefGoogle Scholar
  41. Lawson NM, Mason RP (2001) Concentration of mercury, methylmercury, cadmium, lead, arsenic, and selenium in the rain and stream water of two contrasting watersheds in western Maryland. Water Res 35:4039–4052. doi: 10.1016/S0043-1354(01)00140-3 CrossRefGoogle Scholar
  42. LaZerte B (1986) Metals and acidification—an overview. Water Air Soil Pollut 31:569–576. doi: 10.1007/BF00284213 CrossRefGoogle Scholar
  43. LaZerte BD, Dillon PJ (1984) The relative importance of anthropogenic versus natural sources of acidity. Can J Fish Aquat Sci 41:1664–1677. doi: 10.1139/f84-205 CrossRefGoogle Scholar
  44. LaZerte BD, Chun C, Evans D, Tomassini F (1988) Measurement of aqueous aluminum species—comparison of dialysis and ion-exchange techniques. Environ Sci Technol 22:1106–1108. doi: 10.1021/es00174a018 CrossRefGoogle Scholar
  45. LaZerte B, Evans D, Grauds P (1989) Deposition and transport of trace-metals in an acidified catchment of central Ontario. Sci Total Environ 87–8:209–221. doi: 10.1016/0048-9697(89)90236-2 Google Scholar
  46. Lindberg SE, Turner RR (1988) Factors influencing atmospheric deposition, stream export, and landscape accumulation of trace-metals in forested watersheds. Water Air Soil Pollut 39:123–156. doi: 10.1007/BF00250954 CrossRefGoogle Scholar
  47. Magnuson JJ, Webster KE, Assel RA, Bowser CJ, Dillon PJ, Eaton JG, Evans HE, Fee EJ, Hall RI, Mortsch LR, Schindler DW, Quinn FH (1997) Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield region. Hydrol Process 11:825–871. doi: 10.1002/(SICI)1099-1085(19970630)11:8<825::AID-HYP509>3.0.CO;2-G CrossRefGoogle Scholar
  48. McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valley. Ecol Monogr 58:177–195. doi: 10.2307/2937024 CrossRefGoogle Scholar
  49. Michalzik B, Matzner E (1999) Dynamics of dissolved organic nitrogen and carbon in a central European Norway spruce ecosystem. Eur J Soil Sci 50:579–590. doi: 10.1046/j.1365-2389.1999.00267.x CrossRefGoogle Scholar
  50. MOE (Ontario Ministry of Environment and Energy) (1994) Water management policies guidelines provincial water quality objectives of the Ministry of Environment and Energy. Queens Printer for Ontario. Available from Cited Nov 19 2007
  51. Navratil T, Shanley JB, Skrivan P, Kram P, Mihaljevic M, Drahota P (2007) Manganese biogeochemistry in a central Czech Republic catchment. Water Air Soil Pollut 186:149–165. doi: 10.1007/s11270-007-9474-1 CrossRefGoogle Scholar
  52. Neary AJ, Gizyn WI (1994) Throughfall and stemflow chemistry under deciduous and coniferous forest canopies in south-central Ontario. Can J For Res 24:1089–1100. doi: 10.1139/x94-145 CrossRefGoogle Scholar
  53. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace-metals. Nature 338:47–49. doi: 10.1038/338047a0 CrossRefGoogle Scholar
  54. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature 333:134–139. doi: 10.1038/333134a0 CrossRefGoogle Scholar
  55. Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298. doi: 10.1139/er-9-4-269 CrossRefGoogle Scholar
  56. Peters DL, Buttle JM, Taylor CH, Lazerte BD (1995) Runoff production in a forested, shallow soil, Canadian Shield Basin. Water Resour Res 31:1291–1304. doi: 10.1029/94WR03286 CrossRefGoogle Scholar
  57. Petty WH, Lindberg SE (1990) An intensive 1-month investigation of trace-metal deposition and throughfall at a mountain spruce forest. Water Air Soil Pollut 53:213–226. doi: 10.1007/BF00170738 CrossRefGoogle Scholar
  58. Pirrone N, Keeler GJ (1996) The Rouge River watershed pollution by trace elements: atmospheric depositions and emission sources. Water Sci Technol 33:267–275. doi: 10.1016/0273-1223(96)00240-5 CrossRefGoogle Scholar
  59. Rea AW, Lindberg SE, Keeler GJ (2001) Dry deposition and foliar leaching of mercury and selected trace elements in deciduous throughfall. Atmos Environ 35:3453–3462. doi: 10.1016/S1352-2310(01)00133-9 CrossRefGoogle Scholar
  60. Ross HB (1987) Trace metals in precipitation in Sweden. Water Air Soil Pollut 36:349–363. doi: 10.1007/BF00229677 CrossRefGoogle Scholar
  61. Sauvé S, McBride MB, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut 100:133–149. doi: 10.1023/A:1018312109677 CrossRefGoogle Scholar
  62. Sauvé S, Martinez CE, McBride M, Hendershot W (2000) Adsorption of free lead (Pb2+) by pedogenic oxides, ferrihydrite, and leaf compost. Soil Sci Soc Am J 64:595–599Google Scholar
  63. Scheider WJ, Cox CM, Scott LD (1983) Hydrological data for lakes and watersheds in the Muskoka-Haliburton study area (1976–1980). Ontario Ministry of the Environment Data Report 83(6)Google Scholar
  64. Schiff SL, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ (1997) Export of DOC from forested catchments on the Precambrian Shield of central Ontario: clues from C-13 and C-14. Biogeochemistry 36:43–65. doi: 10.1023/A:1005744131385 CrossRefGoogle Scholar
  65. Schiff S, Aravena R, Mewhinney E, Elgood R, Warner B, Dillon P, Trumbore S (1998) Precambrian Shield wetlands: hydrologic control of the sources and export of dissolved organic matter. Clim Change 40:167–188. doi: 10.1023/A:1005496331593 CrossRefGoogle Scholar
  66. Schindler DW (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can J Fish Aquat Sci 58:18–29. doi: 10.1139/cjfas-58-1-18 CrossRefGoogle Scholar
  67. Schnitzer M (1969) Reactions between fulvic acid, a soil humic compound and inorganic soil constituents. Soil Sci Soc Am J 33:75–81CrossRefGoogle Scholar
  68. Schut PH, Evans WD, Scheider WA (1986) Variation in trace metal exports from small Canadian Shield watersheds. Water Air Soil Pollut 28:225–237Google Scholar
  69. Soil Classification Working Group (1998) Canadian system of soil classification, 3rd edn. Agriculture and Agri-Food Canada Publication 1646. 187 ppGoogle Scholar
  70. Steinnes E, Friedland AJ (2006) Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environ Rev 14:169–186. doi: 10.1139/A06-002 CrossRefGoogle Scholar
  71. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New YorkGoogle Scholar
  72. Sweet CW, Weiss A, Vermette SJ (1998) Atmospheric deposition of trace metals at three sites near the Great Lakes. Water Air Soil Pollut 103:423–439. doi: 10.1023/A:1004905832617 CrossRefGoogle Scholar
  73. Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–48. doi: 10.1023/A:1009627214459 CrossRefGoogle Scholar
  74. Tipping E, Smith EJ, Lawlor AJ, Hughes S, Stevens PA (2003) Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environ Pollut 123:239–253. doi: 10.1016/S0269-7491(02)00375-5 CrossRefGoogle Scholar
  75. Tyler G (2004) Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma 119:277–290. doi: 10.1016/j.geoderma.2003.08.005 CrossRefGoogle Scholar
  76. Tyler G, Olsson T (2001) Concentrations of 60 elements in the soil solution as related to the soil acidity. Eur J Soil Sci 52:151–165. doi: 10.1046/j.1365-2389.2001.t01-1-00360.x CrossRefGoogle Scholar
  77. Van Dijk H (1971) Cation binding of humic acids. Geoderma 5:53–67. doi: 10.1016/0016-7061(71)90024-3 CrossRefGoogle Scholar
  78. Watmough SA, Dillon PJ (2004) Major element fluxes from a coniferous catchment in central Ontario, 1983–1999. Biogeochemistry 67:369–398. doi: 10.1023/B:BIOG.0000015792.42624.57 CrossRefGoogle Scholar
  79. Watmough SA, Dillon PJ (2007) Lead biogeochemistry in a central Ontario forested watershed. Biogeochemistry 84:143–159. doi: 10.1007/s10533-007-9110-6 CrossRefGoogle Scholar
  80. Watmough SA, Aherne J, Eimers MC, Dillon PJ (2007) Acidification at Plastic Lake, Ontario: has 20 years made a difference? Water Air Soil Pollut Focus 7:301–306. doi: 10.1007/s11267-006-9064-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Amanda L. Landre
    • 1
  • Shaun A. Watmough
    • 2
  • Peter J. Dillon
    • 2
  1. 1.Watershed Ecosystems Graduate ProgramTrent UniversityPeterboroughCanada
  2. 2.Environmental Resource ScienceTrent UniversityPeterboroughCanada

Personalised recommendations