, Volume 92, Issue 3, pp 183–200 | Cite as

Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods

  • David L. Achat
  • Mark R. Bakker
  • Laurent Augusto
  • Etienne Saur
  • Lysiane Dousseron
  • Christian Morel


Phosphorus (P) is often a limiting factor of forest growth but our knowledge of the processes governing P availability in forest soils is rather limited. In the present work, we combined a isotopic dilution method with extraction methods to evaluate the P status in Pinus pinaster plantation forests on highly P-deficient soils. Total, organic, and inorganic P, dissolved and diffusive P, i.e. ionic P species that can be transferred from the solid phase to the soil solution due a gradient of concentration, were determined to a soil depth of 120 cm in a gradient of 18 forest sites (seven humid sites, five mesic sites, and six dry sites). Our objective was to assess the potential contribution of organic and inorganic P to plant available P. Based on results and our original assumptions, we observed that the contribution of organic P fractions (mineralization of soil organic P) to P availability related to the contribution of inorganic P fractions (diffusive P for durations up to 1 year) was predominant in litter, less important in top soil horizons, and negligible at depths below 30 cm. This was partly due to a decreasing proportion of organic P and an increasing proportion of diffusive P with soil depth. Owing to a very low amount of diffusive P in the top soils in dry sites, the relative contribution of organic P was actually higher in these sites than in humid and mesic sites, despite a lower overall organic P fraction. The combination of extraction and isotopic dilution methods in our study shed new light on P status in this forest range. In particular, these methods enable assessment of both the size of the pools and their dynamic fractions.


Available phosphorus P-deficiency Phosphorus stocks Pinus pinaster Podzol 



We thank Christian Barbot, Sylvie Niollet, Stéphane Thunot, Alain Mollier, Xavier Cavard and Elise Jolicoeur for their help in sampling soils and Victor Jean-Paul-Romero, Marc Pucheu-Planté and Nicolas Proix (LAS-INRA) for the chemical analyses. We also thank Daphne Goodfellow for revising the English and E. Matzner and the two anonymous reviewers for constructive comments on the manuscript. Financial supports of this work were provided by ENITAB (Ecole Nationale d’Ingénieurs des Travaux Agricoles de Bordeaux, France) and the Aquitaine region, France within the framework of the FORSEE (Gestion durable des FORêts: un réSEau de zones pilotes pour la mise en oeuvre opérationnellE) project and the “Durabilité du système de production forêt-bois d’Aquitaine” project with the help of Céline Meredieu (INRA).


  1. Achat DL (2009) Biodisponibilité du phosphore dans les sols landais pour les peuplements forestiers de Pin maritime. Thèse, Université Bordeaux 1, p 291Google Scholar
  2. Achat DL, Bakker MR, Trichet P (2008) Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. J For Res 13:165–175. doi: 10.1007/s10310-008-0071-y CrossRefGoogle Scholar
  3. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:2–67Google Scholar
  4. Afnor (1999) Qualité des sols, vol 1: recueil de normes. AFNOR, ParisGoogle Scholar
  5. Alef K (1995) Soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 214–219Google Scholar
  6. Anderson G (1980) Assessing organic phosphorus in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. Proceedings of a symposium at the national fertilizer development center, Tennessee Valley Authority, Muscle Shoals, Alabama, Wisconsin USA, Madison, 1–3 June 1976Google Scholar
  7. Andersen BR (1994) Dissolved inorganic and organic phosphorus in soil water from an acid forest soil collected by ceramic and PTFE soil water samplers. Bull Environ Contam Toxicol 53:361–367. doi: 10.1007/BF00197227 CrossRefGoogle Scholar
  8. Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi: 10.1111/j.1469-8137.1993.tb03847.x CrossRefGoogle Scholar
  9. Augusto L, Badeau V, Arrouays D, Trichet P, Flot JL, Jolivet C, Merzeau D (2006) Caractérisation physico-chimique des sols à l’échelle d’une région naturelle à partir d’une compilation de données. Exemple des sols du massif forestier landais. Étude Gest Sols 13:07–22Google Scholar
  10. Baldock JA, Skjemstad JO (2000) Role of the matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710. doi: 10.1016/S0146-6380(00)00049-8 CrossRefGoogle Scholar
  11. Bonneau M (1995) Fertilisation des forêts dans les pays tempérés. Théorie, bases du diagnostic, conseils pratiques, réalisations expérimentales. ENGREF, Nancy, p 367Google Scholar
  12. Bonneau M, Lévy G, Montpied P (2003) Evaluation de la pertinence des deux méthodes d’analyse du phosphore dans les sols forestiers. Rev For Fr 55:57–64Google Scholar
  13. Bowman RA, Cole CV (1978) An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci 125:95–101Google Scholar
  14. Bünemann EK, Marschner P, McNeill AM, McLaughlin MJ (2007) Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biol Biochem 39:900–913. doi: 10.1016/j.soilbio.2006.10.009 CrossRefGoogle Scholar
  15. Chaperon H, Crémière L (1994) Manuel pratique de sylviculture du Pin maritime. AFOCEL, p 145Google Scholar
  16. Chen CR, Condron LM, Davis MR, Sherlock RR (2000) Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil 220:151–163. doi: 10.1023/A:1004712401721 CrossRefGoogle Scholar
  17. Chen CR, Condron LM, Davis MR, Sherlock RR (2003a) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177:539–557CrossRefGoogle Scholar
  18. Chen CR, Sinaj S, Condron LM, Frossard E, Sherlock RR, Davis MR (2003b) Characterization of phosphorus availability in selected New Zealand grassland soils. Nutr Cycl Agroecosyst 65:89–100. doi: 10.1023/A:1021889207109 CrossRefGoogle Scholar
  19. Chossat JC (1992) Assainissement, drainage et irrigation en maisiculture dans les landes de Gascogne. Bull Inst Geol Bassin Aquitaine 51–52:57–68Google Scholar
  20. Clarholm M (1993) Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol Fertil Soils 16:287–292. doi: 10.1007/BF00369306 CrossRefGoogle Scholar
  21. Comerford NB, McLeod M, Skinner M (2002) Phosphorus form and bioavailability in the pine rotation following fertilization. P fertilization influences P form and potential bioavailability to pine in the subsequent rotation. For Ecol Manag 169:203–211CrossRefGoogle Scholar
  22. David MB, Vance GF, Krzyszowska AJ (1995) Carbon controls on spodosol nitrogen, sulfur, and phosphorus cycling. In: carbon forms and functions in forest soils. 8th North American conference on forest soils, Gaimesville, Florida, Madison, May 1993Google Scholar
  23. FAO/IUSS (2006) World reference base for soil resources. A framework for international classification, correlation and communication, 2006 edn. Report 103, FAO, RomeGoogle Scholar
  24. Fardeau JC (1993) Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie 13:317–331. doi: 10.1051/agro:19930409 CrossRefGoogle Scholar
  25. Fardeau JC (1996) Dynamics of phosphate in soils. An isotopic outlook. Fertil Res 45:91–100. doi: 10.1007/BF00790658 CrossRefGoogle Scholar
  26. Fardeau JC, Morel C, Boniface R (1991) Cinétiques de transfert des ions phosphate du sol vers la solution du sol: paramètres caractéristiques. Agronomie 11:787–797. doi: 10.1051/agro:19910909 CrossRefGoogle Scholar
  27. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. doi: 10.1038/nature06275 CrossRefGoogle Scholar
  28. Friesen DK, Blair GJ (1988) A dual radiotracer study of transformations of organic, inorganic and plant residue phosphorus in soil in the presence and absence of plants. Aust J Soil Res 26:355–366. doi: 10.1071/SR9880355 CrossRefGoogle Scholar
  29. Frossard E, Sinaj S (1997) The isotope exchange kinetic technique: a method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isot Environ Health Stud 33:61–77. doi: 10.1080/10256019708036332 CrossRefGoogle Scholar
  30. Frossard E, Stewart JWB, St Arnaud RJ (1989) Distribution and mobility of phosphorus in grassland and forest soils of Saskatchewan. Can J Soil Sci 69:401–416CrossRefGoogle Scholar
  31. Frossard E, Fardeau JC, Brossard M, Morel JL (1994) Soil isotopically exchangeable phosphorus: a comparison between E and L values. Soil Sci Soc Am J 58:846–851Google Scholar
  32. Frossard E, López-Hernández D, Brossard M (1996) Can isotopic exchange kinetics give valuable information on the rate of mineralization of organic phosphorus in soils? Soil Biol Biochem 28:857–864. doi: 10.1016/0038-0717(96)00063-6 CrossRefGoogle Scholar
  33. Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:15–23Google Scholar
  34. Grierson PF, Comerford NB, Jokela EJ (1998) Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida spodosol. Soil Biol Biochem 30:1323–1331. doi: 10.1016/S0038-0717(98)00002-9 CrossRefGoogle Scholar
  35. Hamon RE, McLaughlin MJ (2002) Interferences in the determination of isotopically exchangeable P in soils and a method to minimise them. Aust J Soil Res 40:1383–1397. doi: 10.1071/SR02045 CrossRefGoogle Scholar
  36. Hamon RE, Bertrand I, McLaughlin MJ (2002) Use and abuse of isotopic exchange data in soil chemistry. Aust J Soil Res 40:1371–1381. doi: 10.1071/SR02046 CrossRefGoogle Scholar
  37. Harrison AF (1982) Labile organic phosphorus mineralization in relationship to soil properties. Soil Biol Biochem 14:343–351. doi: 10.1016/0038-0717(82)90004-9 CrossRefGoogle Scholar
  38. Harrison AF (1983) Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils. Soil Biol Biochem 15:93–99. doi: 10.1016/0038-0717(83)90124-4 CrossRefGoogle Scholar
  39. Hayes JE, Richardson AE, Simpson RJ (2000) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286. doi: 10.1007/s003740000249 CrossRefGoogle Scholar
  40. He ZL, Wu J, O’Donnell AG, Syers JK (1997) Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol Fertil Soils 24:421–428. doi: 10.1007/s003740050267 CrossRefGoogle Scholar
  41. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi: 10.1023/A:1013351617532 CrossRefGoogle Scholar
  42. Joergensen RG, Kubler H, Meyer B, Wolters V (1995) Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biol Fertil Soils 19:215–219. doi: 10.1007/BF00336162 CrossRefGoogle Scholar
  43. Jolivet C, Arrouays D, Leveque J, Andreux F, Chenu C (2003) Organic carbon dynamics in soil particle-size separates of sandy Spodosols when forest is cleared for maiza cropping. Eur J Soil Sci 54:257–268. doi: 10.1046/j.1365-2389.2003.00541.x CrossRefGoogle Scholar
  44. Jolivet C, Augusto L, Trichet P, Arrouays D (2007) Les sols du massif forestier des Landes de Gascogne: formation, histoire, propriétés et variabilité spatiale. Rev For Fr 59:7–30Google Scholar
  45. Jungk A, Claassen N (1997) Ion diffusion in the soil–root system. Adv Agron 63:53–110. doi: 10.1016/S0065-2113(08)60662-8 CrossRefGoogle Scholar
  46. Kavvadias VA, Alifragis D, Tsiontsis A, Brofas G, Stamatelos G (2001) Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For Ecol Manag 144:113–127CrossRefGoogle Scholar
  47. Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760. doi: 10.1016/0038-0717(94)00242-S CrossRefGoogle Scholar
  48. Legigan P (1979) L’élaboration de la formation du sable des Landes, dépôt résiduel de l’environnement sédimentaire Pliocène-Pléïstocène centre Aquitain. Thèse université Bordeaux IGoogle Scholar
  49. McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286. doi: 10.1016/0016-7061(81)90024-0 CrossRefGoogle Scholar
  50. Morel C (2002) Caractérisation de la phytodisponibilité du Phosphore du sol par la modélisation du transfert des ions phosphates entre le sol et la solution. Mémoire d’HDR, INPL Nancy, p 80Google Scholar
  51. Morel C, Plenchette C (1994) Is the isotopically exchangeable phosphate of a loamy soil the plant-available P? Plant Soil 158:287–297. doi: 10.1007/BF00009502 CrossRefGoogle Scholar
  52. Morel C, Schneider A, Plénet D (2004) Modelling phosphorus bioavailability in the arable layer of a sandy soil cropped and fertilized for 28 years. Geophys Res Abstr 6:00216Google Scholar
  53. Moro MJ, Domingo F (2000) Litter decomposition in four woody species in a Mediterranean climate: weight loss, N and P dynamics. Ann Bot (Lond) 86:1065–1071. doi: 10.1006/anbo.2000.1269 CrossRefGoogle Scholar
  54. Neumann G, Römheld V (2002) Root-induced changes in the availability of nutriments in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, The Hidden Half, Third Edition Revised and Expanded. Marcel Dekker Inc., 270 Madison Ave., New York, NY 10016, p 1120Google Scholar
  55. Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675. doi: 10.1016/j.soilbio.2003.12.010 CrossRefGoogle Scholar
  56. Parfitt RL, Tate KR, McKercher RB (1994) Measurement of phosphorus mineralization using an anion exchange membrane. Commun Soil Sci Plant Anal 25:3209–3219. doi: 10.1080/00103629409369259 CrossRefGoogle Scholar
  57. Rabeharisoa L (2004) Gestion de la fertilité et de la fertilisation phosphatée des sols ferrallitiques des hautes terres de Madagascar. Thèse de Doctorat d’Etat. Université d’Antananarivo, Madagascar, p 199Google Scholar
  58. Righi D, Wilbert J (1984) Les sols sableux podzolisés des Landes de Gascogne (France): répartition et caractères principaux. Sci Sol 4:253–264Google Scholar
  59. Ross DJ, Tate KR, Scott NA, Feltham CW (1999) Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem 31:803–813. doi: 10.1016/S0038-0717(98)00180-1 CrossRefGoogle Scholar
  60. Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142. doi: 10.1016/S0146-6380(02)00088-8 CrossRefGoogle Scholar
  61. Saunders WMH, Williams EG (1955) Observations on the determination of total organic phosphorus in soils. J Soil Sci 6:247–267. doi: 10.1111/j.1365-2389.1955.tb00849.x CrossRefGoogle Scholar
  62. Schöning I, Kögel-Knabner I (2006) Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol Biochem 38:2411–2424. doi: 10.1016/j.soilbio.2006.03.005 CrossRefGoogle Scholar
  63. Sharpley AN (1985) Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Sci Soc Am J 49:905–911CrossRefGoogle Scholar
  64. Sparling GP, Hart PBS, August JA, Leslie DM (1994) A comparison of soil and microbial carbon, nitrogen, and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biol Fertil Soils 17:91–100. doi: 10.1007/BF00337739 CrossRefGoogle Scholar
  65. Stroia C, Jouany C, Morel C (2007a) Effect of pooling soil samples on the diffusive dynamics of phosphate ionic species. Soil Sci 172:614–622. doi: 10.1097/ss.0b013e31806db59e CrossRefGoogle Scholar
  66. Stroia C, Morel C, Jouany C (2007b) Dynamics of diffusive soil phosphorus in two grassland experiments determined both in field and laboratory conditions. Agric Ecosyst Environ 119:60–74. doi: 10.1016/j.agee.2006.06.007 CrossRefGoogle Scholar
  67. Trichet P, Jolivet C, Arrouays D, Loustau D, Bert D, Ranger J (1999) Le maintien de la fertilité des sols forestiers landais dans le cadre de la sylviculture intensive du pin maritime. Étude Gest Sols 6:197–214Google Scholar
  68. Trichet P, Vauchel F, Bert D, Bonneau M (2000) Fertilisation initiale et réitérée du pin maritime (Pinus pinaster Aït.): principaux résultats de l’essai de Berganton. Rev For Fr 52:207–222CrossRefGoogle Scholar
  69. Turner BL, Bristow AW, Haygarth PM (2001) Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance. Soil Biol Biochem 33:913–919. doi: 10.1016/S0038-0717(00)00238-8 CrossRefGoogle Scholar
  70. van Veldhoven PP, Mannaerts GP (1987) Inorganic and organic phosphate measurements in the nanomolar range. Anal Biochem 161:45–48. doi: 10.1016/0003-2697(87)90649-X CrossRefGoogle Scholar
  71. van Wesemael B (1993) Litter decomposition and nutrient distribution in humus profiles in some Mediterranean forests in southern Tuscany. For Ecol Manag 57:99–114CrossRefGoogle Scholar
  72. Wattel-Koekkoek EJW, Buurman P, van der Plicht J, Wattel E, van Breemen N (2003) Mean residence time of soil organic matter associated with kaolinite and smectite. Eur J Soil Sci 54:269–278. doi: 10.1046/j.1365-2389.2003.00512.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David L. Achat
    • 1
  • Mark R. Bakker
    • 1
  • Laurent Augusto
    • 2
  • Etienne Saur
    • 1
  • Lysiane Dousseron
    • 2
  • Christian Morel
    • 2
  1. 1.ENITA de Bordeaux, UMR 1220 TCEM (INRA-ENITAB)Villenave d’OrnonFrance
  2. 2.INRA, UMR 1220 TCEM (INRA-ENITAB)Villenave d’OrnonFrance

Personalised recommendations