, 79:91 | Cite as

Assessment of nitrogen flows into the Cuban landscape

  • Julio A. Baisre


The alteration of the nitrogen (N) cycle by human activities is widespread and has often resulted in increased flows of nitrogen to the marine environment. In this paper we have attempted to know the changes of N fluxes in Cuba by quantifying the N inputs to the landscape from (1) fertilizer applications, (2) atmospheric deposition, (3) biological nitrogen fixation and (4) net import of food and feeds. N-inputs to the country progressively increased until the end of the 20th century, reaching a peak during the 80s when low cost fertilizer imported from the former Soviet Union led to heavy rates of application. This rapid growth represented more than a 5-fold increase with respect to pristine values; higher than the two-fold global increase of anthropogenic N reported by Vitousek et al. (1997 Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–750). Inorganic fertilizer was the largest single source of reactive N, followed by atmospheric deposition, biological fixation, and net imports of foods and feedstocks. Nitrogen inputs peaked in 1987 and data expressed on an area basis show that N flux to the Cuban landscape, in the 80s, was one of the highest reported in the literature. During the 90s, there was a dramatic drop in nitrogen inputs mainly associated to a decrease in the use of inorganic fertilizer. Other factors reducing nutrient inflows to Cuba, during the same period, were imports of foodstuff and livestock feeds, a decrease of nitrogen oxide emissions, and a decrease in the sugar cane crop area. Using an empirical relationship (Howarth et al. 1996 Regional nitrogen budgets and riverine N & O fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35:75–139) we present a very preliminary estimate of N-inputs to coastal waters and discuss the consequences of these changes on the coastal zone.

Key words

Atmospheric deposition Fertilizer Nitrogen Nitrogen budgets 



Drs. Robert Howarth, Solange Filoso and Luiz Martinelli, not only stimulated my interest in this problem but also provided considerable help during the preparation of this paper as well as reviewing the first draft. I also thank to Dr.␣Carlos López who kindly provide the information on atmospheric deposition and to Dr. John F. Caddy who reviewed the manuscript and called my attention to the fishery implications of reduction in the fertilizer use in Cuba. I also thank to two anonymous reviewer whose comments improved very much the manuscript.


  1. Aleem A.A. (1972). Effect of river outflow management on marine life. Mar. Biol. 15:200–208CrossRefGoogle Scholar
  2. Alexander R.A., Johnes P.J., Boyer E.W., Smith R.A. (2002). A comparison of methods for estimating the riverine export of nitrogen from large watersheds. Biogeochemistry 57/58:295–339CrossRefGoogle Scholar
  3. Baisre J.A. (1985). Los Complejos Ecológicos de Pesca: Su importancia en la administración de las pesquerías cubanas. FAO Fish Rep. 278(Suppl.):251–272Google Scholar
  4. Baisre J.A. 2000. Chronicle of Cuban Marine Fisheries 1935–1995: Trend analysis and fisheries potential. FAO Fish. Tech. Pap. 394, 26 ppGoogle Scholar
  5. Boesch D.F. 2001. Causes and consequences of nutrient overenrichment of coastal waters. In: Ragaini R. (ed.), International Seminar on Nuclear War and Planetary Emergencies. 25th Session, World Scientific publishing, Singapore, pp. 165–180Google Scholar
  6. Boyer E.W., Goodale C.L., Jaworski N.A., Howarth R.W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry 57/58:137–169CrossRefGoogle Scholar
  7. Caddy J.F. (1993). Towards a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas. Rev. Fish. Sci. 1(1):57–95CrossRefGoogle Scholar
  8. Caddy J.F., Bakun A. (1994). A tentative classification of coastal marine cosystems based on dominant processes of nutrient supply. Ocean Coastal Manag. 23:201–211CrossRefGoogle Scholar
  9. Caddy J.F., Bakun A. (1995). Marine Catchment Basins and anthropogenic effects on coastal fishery ecosystems. FAO Fish. Rep. 349:119–133Google Scholar
  10. Caddy J.F. (2000). Marine catchment basin effects versus impact of fisheries on semienclosed seas. ICES J. Mar. Sci. 57:628–640CrossRefGoogle Scholar
  11. Caraco N.F., Cole J.J. (1999). Human impact of nitrate export: An analysis using major world rivers. Ambio 28(2):167–170Google Scholar
  12. Centella A, Llanes J., López C., Limia M. (2000). First National Report to the United Nation Convention on Climate Change. (Spanish). Instituto de Meteorología La Habana CubaGoogle Scholar
  13. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis S.S., Latty E-.F-., Von Fischer J.C., Elseroad A., Mason M.F., (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biochem. Cycles 13:623–645CrossRefADSGoogle Scholar
  14. Cloern J.E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 210:223–253Google Scholar
  15. Cubagua 2004. Cuban data base on water resources. (
  16. Cuesta Santos O., Ortiz Bulto P.L., González González M.L. (1998). Deposition and atmospheric nitrogen concentrations trends in Cuba. Water, Air, Soil Pollution 106:163–169CrossRefGoogle Scholar
  17. Dacal Moure R. and Rivero de la Calle M. 1986. Arqueología aborigen de Cuba. Editorial Gente Nueva, La Habana, 174 ppGoogle Scholar
  18. Deegan L.A., Day J.W. Jr., Yañez-Arencibia A., Gosselink J.G., Soberón-Chávez G., Sánchez-Gil P. (1986). Relationships among physical characteristics, vegetation, distributions, and fisheries yield in Gulf of Mexico estuaries. In: Wolfe D.A. (eds), Estuarine Variability. Academic Press, NewYork, pp. 83–100Google Scholar
  19. Dennis R. (1997). Using the Regional Acid Deposition Model to determine the nitrogen deposition airshed of the Chesapeake Bay watershed. In: Baker J.E. (eds), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press, Pensacola, Florida, pp. 393–413Google Scholar
  20. Downing J.A., Mcclain M., Twilley R., Melack J.M., Elser J., Rabalais N.N., Lewis W.M. Jr., Turner R.E., Corredor J., Soto D., Yañes-Arencibia A., Kopaska J.A., Howarth R.W. (1999). The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: Current conditions and projected changes. Biogeochemistry 46:109–148Google Scholar
  21. FAO 2003. Fertilizer Used by Crop in Cuba. Food and Agriculture Organization of the United Nations, Rome, 28 ppGoogle Scholar
  22. FAOSTAT 2004. Food and Agriculture Organization of the United Nations FAOSTAT Agriculture Data. (
  23. Galloway J.N., Cowling E.B. (2002). Reactive nitrogen and the world: 200 Years of change. Ambio 31(2):64–71PubMedGoogle Scholar
  24. Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C., Green P., Holland E., Karl D.M., Michaels A.F., Porter J.H., Townsed A., Vorösmarty C. (2004). Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  25. Galloway J.N., Schlesinger W., Levy H. II, Michaels A., Schnoor J.L. (1995). Nitrogen fixation: Atmosopheric enhancement-environmental response. Global Biochem. cycles 9:235–252CrossRefADSGoogle Scholar
  26. Grimes C.B. 2001. Fishery production and the Mississippi river discharge. Fisheries, 26(8): 17–26Google Scholar
  27. Howarth R.W., Billen G., Swaney D., Townsend A., Jaworski N., Lajtha K., Downing J.A., Elmgen R., Caraco N., Jordan T., Berendse F., Freney J., Kudeyarov V., Murdoch P., Zhu Zhao- Liang (1996). Regional nitrogen budgets and riverine N & O fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  28. Howarth R.W., Anderson D., Cloern J., Elfring C., Hopkinson C., Lapointe B., Malone T., Marcus N., McGlathery K., Sharpley A. and Walker D. 2000. Nutrient Pollution of coastal rivers, bays and seas. Issues Ecol. 7, 15 ppGoogle Scholar
  29. Howarth R.H., Boyer E., Pabich W., Galloway J.N. (2002). Nitrogen use in the United States from 1961–2000, and estimates of potential future trends. Ambio 31:88–96PubMedGoogle Scholar
  30. IIIA (1985). Tabla de Composición de Alimentos. Instituto de Investigaciones de la Industria Alimenticia e Instituto Nacional de Higiene de los Alimentos, 6 ppGoogle Scholar
  31. IFA (International Fertilizer Industry Association) 2004. Nitrogen, phosphate and potash statistics (
  32. Jordan T.E., Weller D.E. (1996). Human contributions to terrestrial nitrogen flux. Bioscience 46:655–664CrossRefGoogle Scholar
  33. Kideys A.E. (2002). Fall and rise of the black sea ecosystem. Science 297:1482–1484PubMedCrossRefGoogle Scholar
  34. Marrero L. 1950. Geografía de Cuba. Talleres Tipográficos Alfa, La Habana, 736 ppGoogle Scholar
  35. Nixon S.W. (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219Google Scholar
  36. Matson P.A., Mc Dowell W.H., Townsend A.R., Vitousek P.M. (1999). The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83Google Scholar
  37. ONE 2002. Oficina Nacional de Estadísticas. Anuario Estadístico de Cuba 2001, (Yearbook of Statistics 2001) (Spanish), 335 ppGoogle Scholar
  38. Pearl H. (1985). Enhancement of marine primary production by nitrogen-enriched acid rain. Nature 315:747–749CrossRefADSGoogle Scholar
  39. Peoples M.B., Herridgeand D.F., Ladha J.K. (1995). Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant and soil 174:3–28CrossRefGoogle Scholar
  40. Rabalais N.N. (2002). Nitrogen in aquatic ecosystems. Ambio 31:102–112PubMedGoogle Scholar
  41. Ryther J., Dunstan W. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171:1008–1012PubMedADSGoogle Scholar
  42. Schimel D.S., Braswell B.H., McKeown R., Ojima D.S., Parton W.J., Pulliam W. (1996). Climate and nitrogen controls on the geography and timescales of terrestrial biochemical cycling. Global Biogeochem. Cycles 10:677–692CrossRefADSGoogle Scholar
  43. Smil V. (1997). Global population and the nitrogen cycle. Scientific American, July: 76–81CrossRefGoogle Scholar
  44. Smil V. (1999). Nitrogen in crop production: an account of global flows. Global Biochem. Cycles 13:647–662CrossRefADSGoogle Scholar
  45. Smith E.E. 1954. The Forest of Cuba. Maria Moors Cabot Foundation Publ. 2, 98 ppGoogle Scholar
  46. Stockner J.G., Rydiny E., Hyenstrand P. (2000). Cultural oligotrophication: causes and consequences for fisheries resources. Fisheries 25(5):7–14CrossRefGoogle Scholar
  47. Tabío E.E. and Rey E. 1985. Prehistoria de Cuba. Editorial de Ciencias Sociales, La Habana, 234 ppGoogle Scholar
  48. Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D.G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–750Google Scholar
  49. Watanabe I. (1986). Nitrogen fixation by non-legumes in tropical agriculture with special reference to wetland rice. Plant Soil 90:343–357CrossRefGoogle Scholar
  50. Yan W., Zhang S., Sun P., Seitzinger S.P. (2003). How do nitrogen inputs to the Changjiang basin impact the Changjiang river nitrate: A temporal analysis for 1968–1997. Global Biochem. Cycles 17(4):1091–1100CrossRefADSGoogle Scholar
  51. WRI 2001. Nutrient Overload Unbalancing the Global Nitrogen Cycle. Earth Trends 2001. World Research Institute, pp.1–3.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Ministerio de la Industria PesqueraPlayaCuba

Personalised recommendations