Advertisement

Biogeochemistry

, Volume 80, Issue 1, pp 57–69 | Cite as

Parsimonious modelling of nutrient fluxes for a terrestrial ecosystem on Svalbard

  • L. M. Stapleton
  • J. Laybourn-Parry
  • P. R. Poulton
  • A. M. Tye
  • H. M. West
  • S. D. Young
  • N. M. J. Crout
Article

Abstract

MBL-MEL, a simple model of ecosystem biogeochemistry, is amended and applied to plant and soil C, 14N and 15N data for the summers of 2001–2003 from Brandalpynten, a maritime high Arctic site on Svalbard following the application of 15N (99 atom%) as 15NO3-N at or 15NH4-N at concentrations of 1 or 5 kg N ha−1. Variants of this Parent model are also developed to incorporate: temperature dependence into equations describing nutrient fluxes (Temp model); cryptogams (Cryp model); both features combined (CrypTemp model). Goodness-of-fit (GOF) statistics suggest that the addition of temperature-dependence improves the utility of models with and without cryptogams: the residual weighted sums of squares per data point were 5.69, 3.91, 4.31 and 3.93 for the Parent, Temp, Cryp and CrypTemp models respectively. The application of model selection criteria confirm that the addition of temperature-dependence also improves model generalisability. Across all models, the principal discrepancies between observation and prediction are associated with the inorganic soil 15N pool. We conclude that models in which fluxes are described using simple equations that can be augmented to include additional complexity, are an ideal starting point from which the relationship between GOF and model generalisability can be assessed.

Keywords

Arctic Complexity Ecosystems Nutrient-cycles Modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. 1973Information theory and an extension of the maximum likelihood principlePetrox, B.N.Caski, F. eds. Second International Symposium on Information TheoryAkademiai KiadoBudapest, Hungary267Google Scholar
  2. Bozdogan, H. 1990On the information-based measure of covariance complexity and its applications to the evaluation of multivariate linear modelsCommun. Stat. Theory19221278Google Scholar
  3. Gordon, C., Wynn, J.M., Woodin, S.J. 2001Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availabilityNew Phytol.149461467CrossRefGoogle Scholar
  4. Harley, P.C., Tenhunen, J.D., Murray, K.J., Beyers, J. 1989Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith mountains, AlaskaOecologia79251259CrossRefGoogle Scholar
  5. Joranger, E., Semb, A. 1989Major ions and scavenging of sulphate in the Norwegian ArcticAtmos. Environ.2324632469CrossRefGoogle Scholar
  6. Keeling C.D. and Whorf T.P. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Tennessee, U.S.A.Google Scholar
  7. Lange, O.L., Hahn, S.C., Müller, G., Meyer, A., Tenhunen, J.D. 1996Upland tundra in the foothills of the Brooks RangeAlaska: influence of lightwater content and temperature on CO2 exchange of characteristic lichen speciesFlora1916783Google Scholar
  8. Lassiter R.R. 1975. Modeling the Dynamics of Biological and Chemical Components of Aquatic Ecosystems. Technical Report EPA-660/3-75-012, U.S. Environmental Protection Agency.Google Scholar
  9. Lloyd, C.R. 2001The measurement and modelling of the carbon dioxide exchange at a high Arctic site in SvalbardGlobal Change Biol.7405426CrossRefGoogle Scholar
  10. Marion, G.M., Black, C.H. 1987The effect of time and temperature on nitrogen mineralization in Arctic tundra soilsSoil Sci. Soc. Am. J.5115011508CrossRefGoogle Scholar
  11. McKane, R.B., Rastetter, E.B., Shaver, G.R., Nadelhoffer, K.J., Giblin, A.E., Laundre, J.A., Chapin, F.S.,III 1997Climatic effects on tundra carbon storage inferred from experimental data and a modelEcology7811701187CrossRefGoogle Scholar
  12. Nakatsubo, T., Bekku, Y., Kume, A., Koizumi, H. 1998Respiration of the belowground parts of vascular plants: its contribution to total soil respiration on a successional glacier foreland in Ny-ÅlesundSvalbardPolar Res.175359Google Scholar
  13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. 2002Numerical Recipes in C++Cambridge University PressCambridge, U.KGoogle Scholar
  14. Rastetter, E.B., Ågren, G.I., Shaver, G.R. 1997Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles modelEcol. Appl.7444460Google Scholar
  15. Rastetter, E.B., Ryan, M.G., Shaver, G.R., Melillo, J.R., Nadelhoffer, K.J., Hobbie, J.E., Aber, J.D. 1991A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2climate and N depositionTree Physiol.9101126Google Scholar
  16. Rissanen, J. 1987Stochastic complexity and the MDL principleEconometric Rev.685102Google Scholar
  17. Schmidt, I.K., Jonasson, S., Michelson, A. 1999Mineralisation and microbial immobilization of N and P in Arctic soils in relation to season, temperature and nutrient amendmentAppl. Soil Ecol.11147160CrossRefGoogle Scholar
  18. Schwarz, G. 1978Estimating the dimension of a modelAnn. Stat.6461464Google Scholar
  19. Shaver, G.R., Chapin, F.S.,III 1991Production–biomass relationships and element cycling in contrasting Arctic vegetation typesEcol. Monogr.61131CrossRefGoogle Scholar
  20. Skre, O., Oechel, W.C. 1981Moss functioning in different taiga ecosystems in interior AlaskaOecologia485059CrossRefGoogle Scholar
  21. Stapleton, L.M., Crout, N.M.J., Säwström, C., Marshall, W.A., Poulton, P.R., Tye, A.M., Laybourn-Parry, J. 2005Microbial carbon dynamics in nitrogen amended Arctic tundra soils: measurement and model testingSoil Biol. Biochem.3720882098CrossRefGoogle Scholar
  22. Stapleton, L.M., Young, S.D., Crout, N.M.J. 2004Have missing markets for ecological goods and services affected modelling of terrestrial C and N fluxes?Ecol. Model.179569574CrossRefGoogle Scholar
  23. Thamdrup, B., Fleischer, S. 1998Temperature-dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sedimentsAquat. Microb. Ecol.15191199Google Scholar
  24. Tye, A.M., Young, S.D., Crout, N.M.J., West, H.M., Stapleton, L.M., Poulton, P.R., Laybourn-Parry, J. 2005The fate of 15N added to high Arctic tundra to mimic increased inputs of atmospheric nitrogen released from a melting snowpackGlobal Change Biol.11115CrossRefGoogle Scholar
  25. Winther, J.-G., Godtliebsen, F., Gerland, S., Isachsen, P.K. 2002Surface albedo in Ny-ÅlesundSvalbard: variability and trends during 1981–1997Global Planet. Change32127139CrossRefGoogle Scholar
  26. Woodin, S.J. 1997Effects of acid deposition on Arctic vegetationWoodin, S.J.Marquiss, M. eds. Ecology of Arctic EnvironmentsBlackwell ScienceOxford, U.K219240Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • L. M. Stapleton
    • 1
  • J. Laybourn-Parry
    • 3
  • P. R. Poulton
    • 2
  • A. M. Tye
    • 1
  • H. M. West
    • 1
  • S. D. Young
    • 1
  • N. M. J. Crout
    • 1
  1. 1.Division of Agricultural and Environmental Sciences, School of BiosciencesUniversity of NottinghamNottinghamUnited Kingdom
  2. 2.Agriculture and Environment DivisionRothamsted ResearchHarpenden, HertfordshireUnited Kingdom
  3. 3.Institute for the Environment, Physical Sciences and Applied MathematicsKeele UniversityStaffsUnited Kingdom

Personalised recommendations