, Volume 79, Issue 3, pp 275–296 | Cite as

Short- and Long-term Tannin Induced Carbon, Nitrogen and Phosphorus Dynamics in Corsican Pine Litter

  • Klaas G. J. Nierop
  • Jacobus M. Verstraten
  • Albert Tietema
  • Joke W. Westerveld
  • Piet E. Wartenbergh


Pine litter amended with either tannic acid (TA) or condensed tannins (CTs) was studied to assess the effects on C, N and P mineralization in relation to the fate of tannins by incubation experiments during various time intervals. TA induced a rapid short-term effect resulting in high C respiration and net N and P immobilisation. After one week of incubation, TA was decomposed and net C, N and P mineralization and net nitrification resembled that of the control (non-amended litter). CTs exhibited effects on net mineralization on longer terms, i.e. after several weeks of incubation until the end of the experiment (84 days). While net N and P mineralization were greatly reduced, net nitrification was only slightly affected. Most likely CTs formed complexes with organic N of the substrate thereby reducing net N mineralization, while such complexes were not involved in net nitrification processes. The reduction of net P mineralization is due to the lack of need for P by microbes when they cannot get access to N. The fact that decreasing amounts of extractable CTs were accompanied by increasing effects on mineralization processes with incubation time strongly suggests that CTs were incorporated into the litter in such a way that they were inextricable by the common solvents needed to measure tannins, such as for the Folin–Ciocalteu and HCl–butanol assays.


Carbon respiration Condensed tannin Nitrogen mineralization Phosphorus mineralization Tannic acid 



Condensed tannin


Dissolved inorganic nitrogen


Dissolved organic carbon


Dissolved organic nitrogen


Hydrolysable tannin


Inductively Coupled Plasma-Optical Emission Spectrometer


Nuclear Magnetic Resonance


Total nitrogen






Tannic acid


Thermally assisted Hydrolysis and Methylation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attiwill, P.M., Adams, M.A. 1993Nutrient cycling in forestsNew Phytol.124561582CrossRefGoogle Scholar
  2. Benoit, R.E., Starkey, R.L. 1968aEnzyme inactivation as a factor in the inhibition of decomposition of organic matter by tanninsSoil Sci.105203208CrossRefGoogle Scholar
  3. Benoit, R.E., Starkey, R.L. 1968bInhibition of decomposition of cellulose and some other carbohydrates by tanninSoil Sci.105291296Google Scholar
  4. Bradley, R.L., Titus, B.D., Preston, C.P. 2000Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from Kalmia angustifoliabalsam firSoil Biol. Biochem.3212271240CrossRefGoogle Scholar
  5. Field, J.A., Lettinga, G. 1992Toxicity of tannic compounds to microorganismsHemingway, R.W.Laks, R.E. eds. Plant Polyphenols. Synthesis, Properties, SignificancePlenum PressNew York673692Google Scholar
  6. Fierer, N., Schimel, J.P., Cates, R.G., Zou, Z. 2001The influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soilsSoil Biol. Biochem.3318271839CrossRefGoogle Scholar
  7. Goldstein, J.L., Swain, T. 1965The inhibition of enzymes by tanninsPhytochemistry4185192CrossRefGoogle Scholar
  8. Handley, W.R.C. 1961Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen for plant growthPlant Soil153773CrossRefGoogle Scholar
  9. Harborne, J.B. 1997Role of phenolic secondary metabolites in plants and their degradation in natureCadish, G.Giller, K.E. eds. Driven by Nature; Plant Litter Quality and DecompositionCAB InternationalWallingford6774Google Scholar
  10. Hättenschiler, S., Vitousek, P.M. 2000The role of polyphenols in terrestrial ecosystem nutrient cyclingTrends Ecol. Evol.15238243CrossRefGoogle Scholar
  11. Hättenschiler, S., Hagerman, A.E., Vitousek, P.M. 2003Polyphenols in litter from tropical montane forests across a wide range in soil fertilityBiogeochemistry64129148CrossRefGoogle Scholar
  12. Hernes, P.J., Benner, R., Cowie, G.L., Goñi, M.A., Bergamaschi, B.A., Hedges, J.I. 2001Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approachGeochim. Cosmochim. Acta6531093122CrossRefGoogle Scholar
  13. Horner, J.D., Gosz, J.R., Cates, R.G. 1988The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystemsAm. Nat.132869883CrossRefGoogle Scholar
  14. Horwath, W.R., Paul, E.A. 1994Microbial BiomassWeaver, R.W.Angle, S.Bottomley, P. eds. Methods of Soil Analysis, Part 2. Microbiological and Biochemical PropertiesSoil Sci. Soc. Amer. Book Series, No. 5Madison, WI753773Google Scholar
  15. Isaac, R.A., Kerber, J.D. 1971Atomic absorption and flamephotometry: Techniques and uses in soil, plant and water analysisWalsh, L.M. eds. Instrumental methods for analyses of soils and plant tissueSoil Science Society of AMerica, Inc.Madison, WI1737Google Scholar
  16. Juntheikki, M.R., Julkunen-Tiitto, R. 2000Inhibition of β-glucosidase and esterase by tannins from Betula, Salix, Pinus speciesJ. Chem. Ecol.2611511165CrossRefGoogle Scholar
  17. Kaal, J., Nierop, K.G.J., Verstraten, J.M. 2005Retention of tannic acid and condensed tannin by Fe oxide-coated quartz sandJ. Coll. Int. Sci.2877279CrossRefGoogle Scholar
  18. Kraus, T.E.C., Dahlgren, R.A., Zasoski, R.J. 2003aTannins in nutrient dynamics of forest ecosystems – a reviewPlant Soil2564166CrossRefGoogle Scholar
  19. Kraus, T.E.C., Yu, Z., Preston, C.M., Dahlgren, R.A., Zasoski, R.J. 2003bLinking chemical reactivity and protein precipitation to structural characteristics of foliar tanninsJ. Chem. Ecol.29703730CrossRefGoogle Scholar
  20. Kraus, T.E.C., Zasoski, R.J., Dahlgren, R.A., Horwath, W.R., Preston, C.M. 2004Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plants speciesSoil Biol. Biochem.36309321CrossRefGoogle Scholar
  21. Lewis, J.A., Starkey, R.L. 1968Vegetable tannins, their decomposition and effects on decomposition of some organic compoundsSoil Sci.106241247Google Scholar
  22. Lorenz, K., Preston, C.M., Raspe, S., Morrison, I.K., Feger, K.H. 2000Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMRSoil Biol. Biochem.32779792CrossRefGoogle Scholar
  23. Lorenz, K., Preston, C.M., Krumrei, S., Feger, K.H. 2004Decomposition of needles/leaf litter from Scots pineblack cherry, common oak and European beech at a conurbation forest siteEur. J. Forest Res.123177188CrossRefGoogle Scholar
  24. Nierop, K.G.J., Preston, C.M., Kaal, J. 2005Thermally assisted Hydrolysis and Methylation of purified tannins from plantsAnal. Chem.7756045614CrossRefGoogle Scholar
  25. Northup, R.R., Yu, Z., Dahlgren, R.A., Vogt, K.A. 1995Polyphenol control of nitrogen release from pine litterNature377227229CrossRefGoogle Scholar
  26. Northup, R.R., Dahlgren, R.A., McColl, J.G. 1998Polyphenols as regulators of plant-litter-soil interactions in northern California’ s pygmy forest: a positive feedback?Biogeochem.42189220CrossRefGoogle Scholar
  27. Parfitt, R.L., Newman, R.H. 200013C NMR study of pine needle decompositionPlant and Soil219273278CrossRefGoogle Scholar
  28. Preston, C.M. 1999Condensed tannins of salal (Gaultheria shallon Pursh): a contributing factor to seedling “growth check” on northern Vancouver Island?Gross, G.G.Hemingway, R.W.Yoshida, T. eds. Plant Polyphenols 2: Chemistry, Biology, Pharmacology, EcologyKluwer Academic/Plenum PublishersNew York825841Google Scholar
  29. Schimel, J.P., Cleve, K., Cates, R.G., Clausen, T.P., Reichardt, P.B. 1996Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during successionCan. J Bot.748490Google Scholar
  30. Schimel, J.P., Cates, R.G., Ruess, R. 1998The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taigaBiogeochemistry42221234CrossRefGoogle Scholar
  31. Schofield, J.A., Hagerman, A.E., Harold, A. 1998Loss of tannins and other phenolics from willow leaf litterJ. Chem. Ecol.2414091421CrossRefGoogle Scholar
  32. Stark, J.M., Hart, S.C. 1997High rates of nitrification and nitrate turnover in undisturbed coniferous forestsNature3856164CrossRefGoogle Scholar
  33. Stevenson, F.J. 1994Humus Chemistry. Genesis, Composition, Reactions2John WileyNew York496Google Scholar
  34. Tiarks, A.E., Bridges, J.R., Hemingway, R.W., Shoulders, E. 1989Condensed tannins in southern pines and their interactions with the ecosystemHemingway, R.W.Karchesy, J.J. eds. Chemistry and Significance of Condensed TanninsPlenum PressNew York369390Google Scholar
  35. Tietema, A., Verstraten, J.M. 1992Nitrogen cycling in an acid forest ecosystem in the Netherlands under increased atmospheric nitrogen input – the nitrogen budget and the effect of nitrogen transformations on the proton budgetBiogeochemistry152146Google Scholar
  36. Waterman, P.G., Mole, S. 1994Analysis of Phenolic Plant MetabolitesBlackwell Scientific PublicationsOxford237Google Scholar
  37. Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C. 1990Measurement of soil microbial biomass C by fumigation-extraction – an automated procedureSoil Biol. Biochem.2211671169CrossRefGoogle Scholar
  38. Yu, Z., Dahlgren, R.A. 2000Evaluation of methods for measuring polyphenols in conifer foliageJ. Chem. Ecol.2621192140CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Klaas G. J. Nierop
    • 1
  • Jacobus M. Verstraten
    • 1
  • Albert Tietema
    • 1
  • Joke W. Westerveld
    • 1
  • Piet E. Wartenbergh
    • 1
  1. 1.IBED-Earth Surface Processes and MaterialsUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations