Skip to main content
Log in

Tannin Dynamics of Propagules and Leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Changes in the total phenolics, condensed tannins (CT), protein-precipitable phenolics content and protein precipitation capacity were determined on a series of mangrove leaves from two true viviparous mangrove species (Kandelia candel and Bruguiera gymnorrhiza) at various stages of development and decomposition in the Jiulong River Estuary, Fujian, China. Similar measurements were also done for the propagules at different developmental stages. The results showed that the total phenolics, extractable condensed tannins, total condensed tannins, protein-precipitable phenolics content and protein precipitation capacity in young leaves were higher than those in mature and senescent leaves. Tannin dynamics during leaf decomposition varied with species, and the rapid loss of phenolics observed during decomposition can be ascribed to leaching and degradation. Protein-bound CT and fibre-bound CT tended to increase with leaf decomposition, with CT binding more strongly to protein than to fibre. Protein-bound CT was higher than fibre-bound CT with the exception of mature leaves. Total phenolics, extractable CT and protein-precipitable phenolics contents in flower tissues were relatively lower than those in hypocotyls at different developmental stages. Protein precipitation capacity fluctuated with the development of propagules. Increases in nitrogen in decaying litter, and declines in contents of total phenolics and total condensed tannins of detritus support the general conclusion that decomposing mangrove detritus can be a more palatable heterotrophic substrate than living leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • R. Benner M.L. Fogel E.K. Sprague (1991) ArticleTitleDiagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments Limnol Oceanogr. 36 1358–1374 Occurrence Handle10.4319/lo.1991.36.7.1358

    Article  Google Scholar 

  • T.D. Bruyne L. Pieters H. Deelstra A. Vlietinck (1999) ArticleTitleCondensed vegetable tannins: biodiversity in structure and biological activities Biochem. Syst. Ecol. 27 445–459 Occurrence Handle10.1016/S0305-1978(98)00101-X

    Article  Google Scholar 

  • C.W. Chang F.L. Hsu J.Y. Lin (1994) ArticleTitleInhibitory effects polyphenolic transcripase activity J. Biomed. Sci. 1 163–166 Occurrence Handle10.1007/BF02253344

    Article  Google Scholar 

  • K.T. Chung S.E. Stevens SuffixJr. W.F. Lin C.I. Wei (1993) ArticleTitleGrowth inhibition of selected food-borne bacterial by tannin acidpropyl gallate and related compounds leu Appl. Microbiol. 1 29–32 Occurrence Handle10.1111/j.1472-765X.1993.tb01428.x

    Article  Google Scholar 

  • K.T. Chung G. Zhao E.S. Stevens SuffixJr. B.A. Simco C.I. Wei (1995a) ArticleTitleGrowth inhibition of selected aquatic bacterial by tannic acid and related compounds J. Aquat. Anim. Health 7 46–49 Occurrence Handle10.1577/1548-8667(1995)007<0046:GIOSAB>2.3.CO;2

    Article  Google Scholar 

  • K.T. Chung G. Zhao E.S. Stevens SuffixJr. (1995b) ArticleTitleInhibitory effects of tannic acid and its derivatives on growth of the Cyanobacteria nostoc sp. MAC and Agmenellum quadruplicatum PR-6 J. Aquat. Anim. Health 7 341–344 Occurrence Handle10.1577/1548-8667(1995)007<0341:CIEOTA>2.3.CO;2

    Article  Google Scholar 

  • K.T. Chung C.I. Wei M.G. Johnson (1998) ArticleTitleAre tannins a double-edged sword in biology and health? Trends Food Sci. Tech. 9 168–175 Occurrence Handle10.1016/S0924-2244(98)00028-4

    Article  Google Scholar 

  • H.D. Graham (1992) ArticleTitleStabilization of the prussian blue color in the determination of polyphenols J. Agric. Food Chem. 40 801–805 Occurrence Handle10.1021/jf00017a018

    Article  Google Scholar 

  • A.E. Hagerman (1987) ArticleTitleRadial diffusion method for determining tannin in plant extracts J. Chem. Ecol. 13 IssueID3 437–449 Occurrence Handle10.1007/BF01880091

    Article  Google Scholar 

  • Hagerman A.E. 2002. Tannin Chemistry. http://www.users.muohio.edu/Hagermae/.

  • A.E. Hagerman L.G. Butler (1981) ArticleTitleSpecificity of the proanthocyanidin-protein interaction J. Biol. Chem. 256 4494–4497

    Google Scholar 

  • A.E. Hagerman K. Klucher (1986) Tannin–protein interactions J. Harborne E. Middleton (Eds) Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-Activity Relationships Alan R. Liss New York 67–76

    Google Scholar 

  • A.E. Hagerman K.M. Riedl G.A. Jones K.N. Sovik N.T. Ritchard P.W. Hartzfeld T.L. Riechel (1998) ArticleTitleHigh molecular weight plant polyphenolics (tannins) as biological antioxidants J. Agric. Food Chem. 46 1887–1892 Occurrence Handle10.1021/jf970975b

    Article  Google Scholar 

  • R.W. Hemingway J.J. Karchesy (1989) Chemistry and Significance of Condensed Tannins Plenum New York

    Google Scholar 

  • R.W. Hemingway P.E. Laks (1992) Plant Polyphenols 1: Synthesis, Properties, Significance Plenum New York

    Google Scholar 

  • P.J. Hernes J.I. Hedges (2000) ArticleTitleDetermination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts Anal. Chem. 72 5115–5124 Occurrence Handle10.1021/ac991301y

    Article  Google Scholar 

  • P.J. Hernes R. Benner G.L. Cowie M.A. Goni B.A. Bergamaschi J.I. Hedges (2001) ArticleTitleTannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach Geochim. Cosmochim. Acta 65 3109–3122 Occurrence Handle10.1016/S0016-7037(01)00641-X

    Article  Google Scholar 

  • P.J.A. Howard D.M. Howard (1993) ArticleTitleAmmonification of complexes prepared from gelatin and aqueous extracts of leaves and freshly-fallen litter of trees on different soil types Soil Biol. Biochem. 25 1249–1256 Occurrence Handle10.1016/0038-0717(93)90221-V

    Article  Google Scholar 

  • F.E. Kandil M.H. Grace D.S. Seigler J.M. Cheeseman (2004) ArticleTitlePolyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence Trees 18 518–528 Occurrence Handle10.1007/s00468-004-0337-8

    Article  Google Scholar 

  • T.E.C. Kraus Z. Yu C.M. Preston R.A. Dahlgren R.J. Zasoski (2003) ArticleTitleLinking chemical reactivity and protein precipitation to structural characteristics of foliar tannins J. Chem. Ecol. 29 IssueID3 703–730 Occurrence Handle10.1023/A:1022876804925

    Article  Google Scholar 

  • C. Lee R.W. Howarth B.I. Howes (1980) ArticleTitleSteros in decomposing Spartina alterniflorathe use of ergosterol in estimating the contribution of fungi to detrital nitrogen Limnol. Oceanogr. 25 290–303 Occurrence Handle10.4319/lo.1980.25.2.0290

    Article  Google Scholar 

  • P. Lin (1999) Mangrove Ecosystem in China Science Press Beijing, New York

    Google Scholar 

  • P. Lin R.H. Chen (1986) ArticleTitleStudies on the mangrove ecosystem of the Jiulongjian River Estuary in China. Accumulation and biological cycle of calcium and magnesium in Kandelia candel community Acta Oceanol. Sin. 5 447–455

    Google Scholar 

  • H.P.S. Makkar R.K. Dawra B. Singh (1987) ArticleTitleProtein precipitation assay for quantitation of tannins: determination of protein in tannin–protein complex Anal. Biochem. 166 435–439 Occurrence Handle10.1016/0003-2697(87)90596-3

    Article  Google Scholar 

  • H.P.S. Makkar R.K. Dawra B. Singh (1988) ArticleTitleChanges in tannin contentpolymerization and protein precipitation capacity in Oak (Quercus incana) leaves with maturity J. Sci. Food Agric. 44 301–307

    Google Scholar 

  • J.S. Martin M.M. Martin (1983) ArticleTitleTannin assays in ecological studies. Precipitation of ribulose-1,5-bisphosphate carbonxylase/oxygenase by tannic acidquebrachoand oak foliage extracts J. Chem. Ecol. 9 285–294 Occurrence Handle10.1007/BF00988046

    Article  Google Scholar 

  • J.M. Melillo R.J. Naiman J.D. Aber A.E. Linkins (1984) ArticleTitleFactors controlling mass loss and nitrogen dynamics of plant litter decaying in Northern Streams Bull. Mar. Sci. 35 341–356

    Google Scholar 

  • M. Naczk D. Oickle D. Pink F. Shahidi (1996) ArticleTitleProtein precipitating capacity of crude canola tannins: effect of pH, tannin and protein concentrations J. Agric. Food. Chem. 44 2144–2148 Occurrence Handle10.1021/jf960165k

    Article  Google Scholar 

  • M. Nagamitsu B. Anke K. Heike K. Ingrid (2003) ArticleTitleChanges in the structure and protein binding ability of condensed tannins during decomposition of fresh needles and leaves Soil Biol. Biochem. 35 577–589 Occurrence Handle10.1016/S0038-0717(03)00051-8

    Article  Google Scholar 

  • R.R. Northup R.A. Dahlgren J.G. McColl (1998) ArticleTitlePolyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42 189–220 Occurrence Handle10.1023/A:1005991908504

    Article  Google Scholar 

  • R.R. Northup Z. Yu R.A. Dahlgren K.A. Vogt (1995) ArticleTitlePolyphenol control of nitrogen release from pine litter Nature 377 227–229 Occurrence Handle10.1038/377227a0

    Article  Google Scholar 

  • M.S.M. Rawat G. Pant D. Prasad R.K. Joshi C.B. Pande (1998) ArticleTitlePlant growth inhibitors (proanthocyanidins) from Prunus armeniaca Biochem. Sys. Ecol. 26 13–23 Occurrence Handle10.1016/S0305-1978(97)00080-X

    Article  Google Scholar 

  • D.L. Rice (1982) ArticleTitleThe detritus nitrogen problem: new observations and perspective from organic geochemistry Mar. Ecol. Prog. Ser. 9 153–162

    Google Scholar 

  • M.C. Rossiter J.C. Schultz I.T. Baldwin (1988) ArticleTitleRelationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction Ecology 69 267–277 Occurrence Handle10.2307/1943182

    Article  Google Scholar 

  • A. Scalbert (1992) ArticleTitleAntimicrobial properties of tannin Phytochemistry 30 3875–3883 Occurrence Handle10.1016/0031-9422(91)83426-L

    Article  Google Scholar 

  • J.A. Schofield A.E. Hagerman A. Harold (1998) ArticleTitleLoss of tannins and other phenolics from willow leaf litter J. Chem. Ecol. 24 1409–1421 Occurrence Handle10.1023/A:1021287018787

    Article  Google Scholar 

  • T.H. Terrill A.M. Rowan G.B. Douglas T.N. Barry (1992) ArticleTitleDetermination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains J. Sci. Food Agric. 58 321–329

    Google Scholar 

  • P.B. Tomlinson (1986) The Botany of Mangroves Cambridge University Press Cambridge

    Google Scholar 

  • A.F. Woitchik B. Ohowa J.M. Kazungu R.G. Rao L. Goeyens F. Dehairs (1997) ArticleTitleNitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): relative importance of biological nitrogen fixation Biogeochemistry 39 15–35 Occurrence Handle10.1023/A:1005850032254

    Article  Google Scholar 

  • S. Yoshida D.A. Forno J.H. Cock K.A. Gomez (1972) Laboratory Manual for Physiological Studies of Rice EditionNumber2 The International Rice Research Institute Philiphines

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y.M., Liu, J.W., Xiang, P. et al. Tannin Dynamics of Propagules and Leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry 78, 343–359 (2006). https://doi.org/10.1007/s10533-005-4427-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-4427-5

Keywords

Navigation