Skip to main content
Log in

Iron Reduction and Soil Phosphorus Solubilization in Humid Tropical Forests Soils: The Roles of Labile Carbon Pools and an Electron Shuttle Compound

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The affinity of iron oxides and hydroxides for phosphorus is thought to contribute to phosphorus limitation to net primary productivity in humid tropical forests on acidic, highly weathered soils. Perennially warm, humid conditions and high biological activity in these soils can result in fluctuating redox potential that in turn leads to considerable iron reduction in the presence of labile carbon and humic substances. We investigated the effects of reducing conditions in combination with the addition of labile carbon substrates (glucose and acetate) and an electron shuttle compound on iron reduction and phosphorus release in a humid tropical forest soil. Glucose or acetate was added to soils as a single dose at the beginning of the experiment, and as pulsed inputs over time, which more closely mimics patterns in labile carbon availability. Iron reduction and phosphorus mobilization were weakly stimulated by a single low level addition of carbon, and the addition of the electron shuttle compound with or without added carbon. Pulsed labile carbon additions produced a significant increase in soil pH, soluble iron, and phosphorus concentrations. Pulsed labile carbon inputs also promoted the precipitation of ferrous hydroxide complexes which could increase the capacity for P sorption, although our results suggest that rates of P solubilization exceeded re-adsorption. Plant and microbial P demand are also likely to serve as an important sinks for released P, limiting the role of P re-adsorption. Our results suggest that reducing conditions coupled with periodic carbon inputs can stimulate iron reduction and a corresponding increase in soil phosphorus mobilization, which may provide a source of phosphorus to plants and microorganisms previously undocumented in these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Achtnich F. Bak R. Conrad (1995) ArticleTitleCompetition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil Biol. Fertil. Soils 19 65–72 Occurrence Handle10.1007/BF00336349

    Article  Google Scholar 

  • D.S. Baldwin A.M. Mitchell (2000) ArticleTitleThe effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis Regulat. Rivers: Res. Mgmt. 16 457–467 Occurrence Handle10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B

    Article  Google Scholar 

  • Brown S., Lugo A.E., Silander S. and Liegal L. 1986. Research history and opportunities in the Luquillo Experimental Forest. General Technical Report SO-441. USDA Forest Service Southern Forest Experimental Station, 28 pp.

  • N. Chacon N. Dezzeo (2004) ArticleTitlePhosphorus fractions and sorption processes in soil samples taken in a forest–savanna sequence of the Gran Sabana in southern Venezuela Biol. Fertil. Soils 40 14–19 Occurrence Handle10.1007/s00374-004-0733-7

    Article  Google Scholar 

  • N. Chacon N. Dezzeo B. Muñoz J.M. Rodríguez (2005) ArticleTitleImplications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco RiverVenezuela Biogeochemistry 73 555–566 Occurrence Handle10.1007/s10533-004-1773-7

    Article  Google Scholar 

  • T.T. Chao L. Zhou (1983) ArticleTitleExtraction techniques for selective dissolution of amorphous iron oxides from soils and sediments Soil Sci. Soc. Am. J. 47 225–232 Occurrence Handle10.2136/sssaj1983.03615995004700020010x

    Article  Google Scholar 

  • A. Chidthaisong R. Conrad (2000) ArticleTitleTurnover of glucose and acetate coupled to reduction of nitrateferric iron and sulfate and to methanogenesis in anoxic rice field soils FEMS Microbiol. Ecol. 31 73–86

    Google Scholar 

  • A.F. Cross W.H. Schlesinger (1995) ArticleTitleA literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems Geoderma 64 197–214 Occurrence Handle10.1016/0016-7061(94)00023-4

    Article  Google Scholar 

  • N. Dezzeo N. Chacon (2005) ArticleTitleCarbon and nutrient loss in aboveground biomass along a fire induced forest–savanna gradient in the Gran Sabanasouthern Venezuela For. Ecol. Mgmt. 209 343–352 Occurrence Handle10.1016/j.foreco.2005.02.008

    Article  Google Scholar 

  • H. Dong J.K. Fredrickson D.W. Kennedy J.M. Zachara R.K. Kukkadapu T.C. Onstott (2000) ArticleTitleMineral transformation associated with the microbial reduction of magnetite Chem. Geol. 169 299–318 Occurrence Handle10.1016/S0009-2541(00)00210-2

    Article  Google Scholar 

  • J.K. Fredrickson J.M. Zachara D.W. Kennedy H. Dong T.C. Onstott N.W. Hinman S. Li (1998) ArticleTitleBiogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium Geochim. Cosmochim. Acta 62 3239–3257 Occurrence Handle10.1016/S0016-7037(98)00243-9

    Article  Google Scholar 

  • J. Frizano A.H. Johnson D.R. Vann F.N. Scatena (2002) ArticleTitleSoil phosphorus fractionation during forest development on landslide scars in the Luquillo mountains, Puerto Rico Biotropica 34 17–26 Occurrence Handle10.1111/j.1744-7429.2002.tb00238.x

    Article  Google Scholar 

  • R.P. Gambrell W.H. Patrick (1978) Chemical and microbiological properties of anaerobic soils and sediments D.D. Hook R.M.M. Crawford (Eds) Plant Life in Anaerobic Environments Ann Arbor Science Publ. Inc. Ann Arbor 233–247

    Google Scholar 

  • J. Gijsman A. Oberson H. Tiessen D.K. Friesen (1996) ArticleTitleLimited applicability of the CENTURY model to highly weathered tropical soils Agron. J. 88 894–903 Occurrence Handle10.2134/agronj1996.00021962003600060008x

    Article  Google Scholar 

  • R. Herrera C.F. Jordan H. Klinge E. Medina (1978) ArticleTitleAmazon ecosystems, their structure and functioning with particular emphasis on nutrients Interciencia 3 223–232

    Google Scholar 

  • I.C.R. Holford W.H. Patrick (1979) ArticleTitleEffects of reduction and pH changes on phosphate sorption and mobility in an acid soil Soil Sci. Soc. Am. J. 43 292–296 Occurrence Handle10.2136/sssaj1979.03615995004300020010x

    Article  Google Scholar 

  • I.C.R. Holford W.H. Patrick (1981) ArticleTitleEffects of duration of anaerobiosis and reoxidation on phosphate sorption characteristics of an acid soil Aust. J. Soil Res. 19 69–78 Occurrence Handle10.1071/SR9810069

    Article  Google Scholar 

  • P.H. Hsu (1977) Aluminum oxides and oxyhydroxides J.B. Dixon S.B. Weed (Eds) Minerals in Soil Environments Soil Science Society of America Madison, WI 99–143

    Google Scholar 

  • A.H. Johnson J. Frizano D.R. Vann (2003) ArticleTitleBiogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure Oecologia 135 487–499

    Google Scholar 

  • C.F. Jordan (1982) ArticleTitleThe nutrient balance of an Amazonian rain forest Ecology 61 14–18 Occurrence Handle10.2307/1937148

    Article  Google Scholar 

  • K.C. Küsel T. Wagner A.S. Trinkwalter A.S. Gobner R. Baumler H.L. Drake (2002) ArticleTitleMicrobial reduction of Fe(III) and turnover of acetate in Hawaiian soils Microbiol. Ecol. 40 73–81

    Google Scholar 

  • D.J. Lodge W.H. McDowell C.P. McSwiney (1994) ArticleTitleThe importance of nutrient pulses in tropical forests TREE 9 384–387

    Google Scholar 

  • D. López-Hernández (1977) La química del fósforo en suelos ácidos Universidad Central de VenezuelaEdiciones de la Biblioteca Caracas

    Google Scholar 

  • D.R. Lovley (1991) ArticleTitleDissimilatory Fe(III) and Mn(IV) reduction Microbiol. Rev. 55 259–287

    Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1986) ArticleTitleOrganic matter mineralization with reduction of ferric iron in anaerobic sediments Appl. Environ. Microbiol. 51 683–689

    Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1987) ArticleTitleRapid assay for microbially reducible ferric iron in aquatic sediments Appl. Environ. Microbiol. 53 1536–1540

    Google Scholar 

  • D.R. Lovley J.D. Coates E.L. Blunt-Harris E.J.P. Phillips J.C. Woodward (1996) ArticleTitleHumic substances as electron acceptors for microbial respiration Nature 382 445–448 Occurrence Handle10.1038/382445a0

    Article  Google Scholar 

  • D.R. Lovley J.L. Fraga E.L. Blunt-Harris L.A. Hayes E.J.P. Phillips J.D. Coates (1998) ArticleTitleHumic substances as a mediator for microbially catalyzed metal reduction Acta Hydrochim. Hydrobiol. 26 152–157 Occurrence Handle10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D

    Article  Google Scholar 

  • J. Mackensen M. Tillery-Stevens R. Klinge H. Fölster (2000) ArticleTitleSite parameters, species composition, phytomass structure and element stores of a terra-firme forest in east-AmazoniaBrazil Plant Ecol 151 101–119 Occurrence Handle10.1023/A:1026515116944

    Article  Google Scholar 

  • M. McGroddy W.L. Silver (2000) ArticleTitleVariations in belowground carbon storage and soils CO2 flux rates along a wet tropical climate gradient Biotropica 32 614–624

    Google Scholar 

  • M.E. McGroddy W.L. Silver R. Cosme de Oliviera SuffixJr. (2004) ArticleTitleThe effect of phosphorus availability on decomposition dynamics in a seasonal lowland Amazonian forest Ecosystems 7 172–179 Occurrence Handle10.1007/s10021-003-0208-y

    Article  Google Scholar 

  • J.A. McKeague J.H. Day (1966) ArticleTitleDithionite and oxalate extractable Fe and Al as aids differentiating various classes of soils Can J Soil Sci 46 13–22 Occurrence Handle10.4141/cjss66-003

    Article  Google Scholar 

  • J. Murphy J.P. Riley (1962) ArticleTitleA modified single solution method for the determination of phosphate in natural waters Anal. Chim. Acta 27 31–36 Occurrence Handle10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  • R. Ostertag F.N. Scatena W.L. Silver (2003) ArticleTitleForest floor decomposition following hurricane litter inputs in several Puerto Rican forests Ecosystems 6 261–273 Occurrence Handle10.1007/s10021-002-0203-8

    Article  Google Scholar 

  • R.L. Parfitt (1978) ArticleTitleAnion adsorption by soils and soil materials Adv. Agron. 30 1–50

    Google Scholar 

  • R.L. Parfitt (1989) ArticleTitlePhosphate reactions with natural allophaneferrihydrite and goethite J. Soil Sci. 40 359–369

    Google Scholar 

  • R.L. Parfitt R.J. Atkinson R. St C. Smart (1975) ArticleTitleThe mechanism of phosphate fixation by iron oxides Soil Sci. Soc. Am. Proc. 39 837–841 Occurrence Handle10.2136/sssaj1975.03615995003900050017x

    Article  Google Scholar 

  • W.K. Patrick R.A. Khalid (1974) ArticleTitlePhosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions Science 186 53–55

    Google Scholar 

  • Pett-Ridge J. and Firestone M.K. 2005. Redox fluctuation structures microbial community in a wet tropical soil. Appl. Environ. Microb. 71: 6998–7007.

    Google Scholar 

  • I.R. Phillips M. Greenway (1998) ArticleTitleChanges in water-soluble exchangeable ions, cation exchange capacity, and phosphorusmax in soils under alternating waterlogged and drying conditions Commun. Soil Sci. Plant Anal. 29 51–65 Occurrence Handle10.1080/00103629809369928

    Article  Google Scholar 

  • F.N. Ponnamperuma E.M. Tianco T. Loy (1967) ArticleTitleRedox equilibria in flooded soils, I. The iron hydroxide systems Soil Sci. 103 374–382 Occurrence Handle10.1097/00010694-196706000-00002

    Article  Google Scholar 

  • F.N. Ponnamperuma (1972) ArticleTitleThe chemistry of submerged soils Adv. Agron. 26 29–96 Occurrence Handle10.1016/S0065-2113(08)60633-1

    Article  Google Scholar 

  • C. Quantin T. Becquer J.H. Rouiller J. Berthelin (2002) ArticleTitleRedistribution of metals in a New Caledonia Ferralsol after microbial weathering Soil Sci. Soc. Am. J. 66 1797–1804 Occurrence Handle10.2136/sssaj2002.1797

    Article  Google Scholar 

  • P.A. Sanchez (1976) Properties and Management of Soils in the Tropics Wiley New York, NY 259–260

    Google Scholar 

  • Scatena F.N. 1989. An Introduction to the Physiography and History of the Bisley Experimental Watersheds, Luquillo Mountains Puerto Rico. General Technical Report SO-72. USDA Forest Service Southern Forest Experimental Station, New Orleans, LAUSA22 pp.

  • F.N. Scatena W. Silver T. Siccama A. Johnson M.J. Sanchez (1993) ArticleTitleBiomass and nutrient content of the Bisley research Watersheds, Luquillo Experimental Forest Puerto Rico before and after Hurricane Hugo 1989 Biotropica 25 15–27 Occurrence Handle10.2307/2388975

    Article  Google Scholar 

  • U. Schwertmann R.M. Taylor (1977) Iron oxides J.B. Dixon S.B. Weed (Eds) Minerals in Soil Environments Soil Science Society of America Madison, WI 145–180

    Google Scholar 

  • W.L. Silver (1994) ArticleTitleIs nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98 336–343 Occurrence Handle10.1007/BF00324222

    Article  Google Scholar 

  • W.L. Silver F.N. Scatena A.H. Johnson T.G. Siccama M.J. Sanchez (1994) ArticleTitleNutrient availability in a montane wet tropical forest in Puerto Rico: spatial patterns and methodological considerations Plant Soil 164 129–145

    Google Scholar 

  • W.L. Silver F.N. Scatena A.H. Johnson T.G. Siccama F. Watt (1996) ArticleTitleAt what temporal scales does disturbance affect belowground nutrient pools? Biotropica 28 441–457 Occurrence Handle10.2307/2389087

    Article  Google Scholar 

  • W. Silver A.E. Lugo M. Keller (1999) ArticleTitleSoil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils Biogeochemistry 44 301–328

    Google Scholar 

  • S.S. Shukla J.K. Syers J.D.H. Williams D.E. Armstrong R.F. Harris (1971) ArticleTitleSorption of inorganic phosphate by lake sediments Soil Sci. Soc. Am. Proc. 35 244–249 Occurrence Handle10.2136/sssaj1971.03615995003500020022x

    Article  Google Scholar 

  • InstitutionalAuthorNameStatistica (2001) Statistica for Windows StatSoft, Inc. Tulsa, OK

    Google Scholar 

  • S.H. Stemmler J. Berthelin (2003) ArticleTitleMicrobial activity as a major factor in the mobilization of iron in the humid tropics Eur. J. Soil Sci. 54 725–733 Occurrence Handle10.1046/j.1351-0754.2003.0571.x

    Article  Google Scholar 

  • C.P. Szilas O.K. Borgaard H.C.B. Hansen (1998) ArticleTitlePotential iron and phosphate mobilization during flooding of soil material Water Air Soil Pollut. 106 97–109 Occurrence Handle10.1023/A:1004965631574

    Article  Google Scholar 

  • H. Tiessen J.W.B. Stewart J.O. Moir (1983) ArticleTitleChanges in organic and Pi composition of two grassland soils and their particle size fractions during 60–90 years of cultivation J. Soil Sci. 34 815–823 Occurrence Handle10.1111/j.1365-2389.1983.tb01074.x

    Article  Google Scholar 

  • H. Tiessen P. Chacon E. Cuevas (1994) ArticleTitlePhosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro Oecologia 99 145–150 Occurrence Handle10.1007/BF00317095

    Article  Google Scholar 

  • L.V. Verchot (1999) ArticleTitleCold storage of a tropical soil decreases nitrification potential Soil Sci. Soc. Am. J. 63 1942–1944 Occurrence Handle10.2136/sssaj1999.6361942x

    Article  Google Scholar 

  • P.M. Vitousek (1984) ArticleTitleLitterfall, nutrient cycling, and nutrient limitation in tropical forest Ecology 65 285–298 Occurrence Handle10.2307/1939481

    Article  Google Scholar 

  • P.M. Vitousek R.L. Sanford (1986) ArticleTitleNutrient cycling in moist tropical forest Annu. Rev. Ecol. Syst. 17 137–167 Occurrence Handle10.1146/annurev.es.17.110186.001033

    Article  Google Scholar 

  • J.V. Weiss D. Emerson J.P. Megonigal (2004) ArticleTitleGeochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil FEMS Microbiol. Ecol. 48 89–100 Occurrence Handle10.1016/S0378-1097(04)00035-7

    Article  Google Scholar 

  • I.R. Willet M.L. Higgins (1978) ArticleTitlePhosphate sorption by reduced and reoxidized rice soils Aust. J. Soil Res. 16 319–326 Occurrence Handle10.1071/SR9780319

    Article  Google Scholar 

  • T.E. Wood D. Lawrence D.A. Clark (2005) ArticleTitleVariation in leaf litter nutrients of a Costa Rican rain forest is related to precipitation Biogeochemistry 73 417–437 Occurrence Handle10.1007/s10533-004-0563-6

    Article  Google Scholar 

  • J.M. Zachara J.K. Fredrickson S.W. Li D.W. Kennedy S.C. Smith P.L. Gassman (1998) ArticleTitleBacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials Am. Mineral. 83 1426–1443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi Chacon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacon, N., Silver, W.L., Dubinsky, E.A. et al. Iron Reduction and Soil Phosphorus Solubilization in Humid Tropical Forests Soils: The Roles of Labile Carbon Pools and an Electron Shuttle Compound. Biogeochemistry 78, 67–84 (2006). https://doi.org/10.1007/s10533-005-2343-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-2343-3

Keywords

Navigation