, Volume 78, Issue 1, pp 67–84 | Cite as

Iron Reduction and Soil Phosphorus Solubilization in Humid Tropical Forests Soils: The Roles of Labile Carbon Pools and an Electron Shuttle Compound

  • Noemi Chacon
  • Whendee L. Silver
  • Eric A. Dubinsky
  • Daniela F. Cusack


The affinity of iron oxides and hydroxides for phosphorus is thought to contribute to phosphorus limitation to net primary productivity in humid tropical forests on acidic, highly weathered soils. Perennially warm, humid conditions and high biological activity in these soils can result in fluctuating redox potential that in turn leads to considerable iron reduction in the presence of labile carbon and humic substances. We investigated the effects of reducing conditions in combination with the addition of labile carbon substrates (glucose and acetate) and an electron shuttle compound on iron reduction and phosphorus release in a humid tropical forest soil. Glucose or acetate was added to soils as a single dose at the beginning of the experiment, and as pulsed inputs over time, which more closely mimics patterns in labile carbon availability. Iron reduction and phosphorus mobilization were weakly stimulated by a single low level addition of carbon, and the addition of the electron shuttle compound with or without added carbon. Pulsed labile carbon additions produced a significant increase in soil pH, soluble iron, and phosphorus concentrations. Pulsed labile carbon inputs also promoted the precipitation of ferrous hydroxide complexes which could increase the capacity for P sorption, although our results suggest that rates of P solubilization exceeded re-adsorption. Plant and microbial P demand are also likely to serve as an important sinks for released P, limiting the role of P re-adsorption. Our results suggest that reducing conditions coupled with periodic carbon inputs can stimulate iron reduction and a corresponding increase in soil phosphorus mobilization, which may provide a source of phosphorus to plants and microorganisms previously undocumented in these ecosystems.


Acetate Anaerobic soils AQDS Glucose Highly weathered soils Nutrient cycling Phosphorus limitation Soil redox 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achtnich, C., Bak, F., Conrad, R. 1995Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soilBiol. Fertil. Soils196572CrossRefGoogle Scholar
  2. Baldwin, D.S., Mitchell, A.M. 2000The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesisRegulat. Rivers: Res. Mgmt.16457467CrossRefGoogle Scholar
  3. Brown S., Lugo A.E., Silander S. and Liegal L. 1986. Research history and opportunities in the Luquillo Experimental Forest. General Technical Report SO-441. USDA Forest Service Southern Forest Experimental Station, 28 pp. Google Scholar
  4. Chacon, N., Dezzeo, N. 2004Phosphorus fractions and sorption processes in soil samples taken in a forest–savanna sequence of the Gran Sabana in southern VenezuelaBiol. Fertil. Soils401419CrossRefGoogle Scholar
  5. Chacon, N., Dezzeo, N., Muñoz, B., Rodríguez, J.M. 2005Implications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco RiverVenezuelaBiogeochemistry73555566CrossRefGoogle Scholar
  6. Chao, T.T., Zhou, L. 1983Extraction techniques for selective dissolution of amorphous iron oxides from soils and sedimentsSoil Sci. Soc. Am. J.47225232CrossRefGoogle Scholar
  7. Chidthaisong, A., Conrad, R. 2000Turnover of glucose and acetate coupled to reduction of nitrateferric iron and sulfate and to methanogenesis in anoxic rice field soilsFEMS Microbiol. Ecol.317386Google Scholar
  8. Cross, A.F., Schlesinger, W.H. 1995A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystemsGeoderma64197214CrossRefGoogle Scholar
  9. Dezzeo, N., Chacon, N. 2005Carbon and nutrient loss in aboveground biomass along a fire induced forest–savanna gradient in the Gran Sabanasouthern VenezuelaFor. Ecol. Mgmt.209343352CrossRefGoogle Scholar
  10. Dong, H., Fredrickson, J.K., Kennedy, D.W., Zachara, J.M., Kukkadapu, R.K., Onstott, T.C. 2000Mineral transformation associated with the microbial reduction of magnetiteChem. Geol.169299318CrossRefGoogle Scholar
  11. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W., Li, S. 1998Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacteriumGeochim. Cosmochim. Acta6232393257CrossRefGoogle Scholar
  12. Frizano, J., Johnson, A.H., Vann, D.R., Scatena, F.N. 2002Soil phosphorus fractionation during forest development on landslide scars in the Luquillo mountains, Puerto RicoBiotropica341726CrossRefGoogle Scholar
  13. Gambrell, R.P., Patrick, W.H. 1978Chemical and microbiological properties of anaerobic soils and sedimentsHook, D.D.Crawford, R.M.M. eds. Plant Life in Anaerobic EnvironmentsAnn Arbor Science Publ. Inc.Ann Arbor233247Google Scholar
  14. Gijsman, J., Oberson, A., Tiessen, H., Friesen, D.K. 1996Limited applicability of the CENTURY model to highly weathered tropical soilsAgron. J.88894903CrossRefGoogle Scholar
  15. Herrera, R., Jordan, C.F., Klinge, H., Medina, E. 1978Amazon ecosystems, their structure and functioning with particular emphasis on nutrientsInterciencia3223232Google Scholar
  16. Holford, I.C.R., Patrick, W.H. 1979Effects of reduction and pH changes on phosphate sorption and mobility in an acid soilSoil Sci. Soc. Am. J.43292296CrossRefGoogle Scholar
  17. Holford, I.C.R., Patrick, W.H. 1981Effects of duration of anaerobiosis and reoxidation on phosphate sorption characteristics of an acid soilAust. J. Soil Res.196978CrossRefGoogle Scholar
  18. Hsu, P.H. 1977Aluminum oxides and oxyhydroxidesDixon, J.B.Weed, S.B. eds. Minerals in Soil EnvironmentsSoil Science Society of AmericaMadison, WI99143Google Scholar
  19. Johnson, A.H., Frizano, J., Vann, D.R. 2003Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedureOecologia135487499Google Scholar
  20. Jordan, C.F. 1982The nutrient balance of an Amazonian rain forestEcology611418CrossRefGoogle Scholar
  21. Küsel, K.C., Wagner, T., Trinkwalter, A.S., Gobner, A.S., Baumler, R., Drake, H.L. 2002Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soilsMicrobiol. Ecol.407381Google Scholar
  22. Lodge, D.J., McDowell, W.H., McSwiney, C.P. 1994The importance of nutrient pulses in tropical forestsTREE9384387Google Scholar
  23. López-Hernández, D. 1977La química del fósforo en suelos ácidosUniversidad Central de VenezuelaEdiciones de la BibliotecaCaracasGoogle Scholar
  24. Lovley, D.R. 1991Dissimilatory Fe(III) and Mn(IV) reductionMicrobiol. Rev.55259287Google Scholar
  25. Lovley, D.R., Phillips, E.J.P. 1986Organic matter mineralization with reduction of ferric iron in anaerobic sedimentsAppl. Environ. Microbiol.51683689Google Scholar
  26. Lovley, D.R., Phillips, E.J.P. 1987Rapid assay for microbially reducible ferric iron in aquatic sedimentsAppl. Environ. Microbiol.5315361540Google Scholar
  27. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., Woodward, J.C. 1996Humic substances as electron acceptors for microbial respirationNature382445448CrossRefGoogle Scholar
  28. Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., Coates, J.D. 1998Humic substances as a mediator for microbially catalyzed metal reductionActa Hydrochim. Hydrobiol.26152157CrossRefGoogle Scholar
  29. Mackensen, J., Tillery-Stevens, M., Klinge, R., Fölster, H. 2000Site parameters, species composition, phytomass structure and element stores of a terra-firme forest in east-AmazoniaBrazilPlant Ecol151101119CrossRefGoogle Scholar
  30. McGroddy, M., Silver, W.L. 2000Variations in belowground carbon storage and soils CO2 flux rates along a wet tropical climate gradientBiotropica32614624Google Scholar
  31. McGroddy, M.E., Silver, W.L., Cosme de Oliviera, R.,Jr. 2004The effect of phosphorus availability on decomposition dynamics in a seasonal lowland Amazonian forestEcosystems7172179CrossRefGoogle Scholar
  32. McKeague, J.A., Day, J.H. 1966Dithionite and oxalate extractable Fe and Al as aids differentiating various classes of soilsCan J Soil Sci461322CrossRefGoogle Scholar
  33. Murphy, J., Riley, J.P. 1962A modified single solution method for the determination of phosphate in natural watersAnal. Chim. Acta273136CrossRefGoogle Scholar
  34. Ostertag, R., Scatena, F.N., Silver, W.L. 2003Forest floor decomposition following hurricane litter inputs in several Puerto Rican forestsEcosystems6261273CrossRefGoogle Scholar
  35. Parfitt, R.L. 1978Anion adsorption by soils and soil materialsAdv. Agron.30150Google Scholar
  36. Parfitt, R.L. 1989Phosphate reactions with natural allophaneferrihydrite and goethiteJ. Soil Sci.40359369Google Scholar
  37. Parfitt, R.L., Atkinson, R.J., Smart, R. St C. 1975The mechanism of phosphate fixation by iron oxidesSoil Sci. Soc. Am. Proc.39837841CrossRefGoogle Scholar
  38. Patrick, W.K., Khalid, R.A. 1974Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditionsScience1865355Google Scholar
  39. Pett-Ridge J. and Firestone M.K. 2005. Redox fluctuation structures microbial community in a wet tropical soil. Appl. Environ. Microb. 71: 6998–7007.Google Scholar
  40. Phillips, I.R., Greenway, M. 1998Changes in water-soluble exchangeable ions, cation exchange capacity, and phosphorusmax in soils under alternating waterlogged and drying conditionsCommun. Soil Sci. Plant Anal.295165CrossRefGoogle Scholar
  41. Ponnamperuma, F.N., Tianco, E.M., Loy, T. 1967Redox equilibria in flooded soils, I. The iron hydroxide systemsSoil Sci.103374382CrossRefGoogle Scholar
  42. Ponnamperuma, F.N. 1972The chemistry of submerged soilsAdv. Agron.262996CrossRefGoogle Scholar
  43. Quantin, C., Becquer, T., Rouiller, J.H., Berthelin, J. 2002Redistribution of metals in a New Caledonia Ferralsol after microbial weatheringSoil Sci. Soc. Am. J.6617971804CrossRefGoogle Scholar
  44. Sanchez, P.A. 1976Properties and Management of Soils in the TropicsWileyNew York, NY259260Google Scholar
  45. Scatena F.N. 1989. An Introduction to the Physiography and History of the Bisley Experimental Watersheds, Luquillo Mountains Puerto Rico. General Technical Report SO-72. USDA Forest Service Southern Forest Experimental Station, New Orleans, LAUSA22 pp. Google Scholar
  46. Scatena, F.N., Silver, W., Siccama, T., Johnson, A., Sanchez, M.J. 1993Biomass and nutrient content of the Bisley research Watersheds, Luquillo Experimental Forest Puerto Rico before and after Hurricane Hugo 1989Biotropica251527CrossRefGoogle Scholar
  47. Schwertmann, U., Taylor, R.M. 1977Iron oxidesDixon, J.B.Weed, S.B. eds. Minerals in Soil EnvironmentsSoil Science Society of AmericaMadison, WI145180Google Scholar
  48. Silver, W.L. 1994Is nutrient availability related to plant nutrient use in humid tropical forests?Oecologia98336343CrossRefGoogle Scholar
  49. Silver, W.L., Scatena, F.N., Johnson, A.H., Siccama, T.G., Sanchez, M.J. 1994Nutrient availability in a montane wet tropical forest in Puerto Rico: spatial patterns and methodological considerationsPlant Soil164129145Google Scholar
  50. Silver, W.L., Scatena, F.N., Johnson, A.H., Siccama, T.G., Watt, F. 1996At what temporal scales does disturbance affect belowground nutrient pools?Biotropica28441457CrossRefGoogle Scholar
  51. Silver, W., Lugo, A.E., Keller, M. 1999Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soilsBiogeochemistry44301328Google Scholar
  52. Shukla, S.S., Syers, J.K., Williams, J.D.H., Armstrong, D.E., Harris, R.F. 1971Sorption of inorganic phosphate by lake sedimentsSoil Sci. Soc. Am. Proc.35244249CrossRefGoogle Scholar
  53. Statistica2001Statistica for WindowsStatSoft, Inc.Tulsa, OKGoogle Scholar
  54. Stemmler, S.H., Berthelin, J. 2003Microbial activity as a major factor in the mobilization of iron in the humid tropicsEur. J. Soil Sci.54725733CrossRefGoogle Scholar
  55. Szilas, C.P., Borgaard, O.K., Hansen, H.C.B. 1998Potential iron and phosphate mobilization during flooding of soil materialWater Air Soil Pollut.10697109CrossRefGoogle Scholar
  56. Tiessen, H., Stewart, J.W.B., Moir, J.O. 1983Changes in organic and Pi composition of two grassland soils and their particle size fractions during 60–90 years of cultivationJ. Soil Sci.34815823CrossRefGoogle Scholar
  57. Tiessen, H., Chacon, P., Cuevas, E. 1994Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio NegroOecologia99145150CrossRefGoogle Scholar
  58. Verchot, L.V. 1999Cold storage of a tropical soil decreases nitrification potentialSoil Sci. Soc. Am. J.6319421944CrossRefGoogle Scholar
  59. Vitousek, P.M. 1984Litterfall, nutrient cycling, and nutrient limitation in tropical forestEcology65285298CrossRefGoogle Scholar
  60. Vitousek, P.M., Sanford, R.L. 1986Nutrient cycling in moist tropical forestAnnu. Rev. Ecol. Syst.17137167CrossRefGoogle Scholar
  61. Weiss, J.V., Emerson, D., Megonigal, J.P. 2004Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soilFEMS Microbiol. Ecol.4889100CrossRefGoogle Scholar
  62. Willet, I.R., Higgins, M.L. 1978Phosphate sorption by reduced and reoxidized rice soilsAust. J. Soil Res.16319326CrossRefGoogle Scholar
  63. Wood, T.E., Lawrence, D., Clark, D.A. 2005Variation in leaf litter nutrients of a Costa Rican rain forest is related to precipitationBiogeochemistry73417437CrossRefGoogle Scholar
  64. Zachara, J.M., Fredrickson, J.K., Li, S.W., Kennedy, D.W., Smith, S.C., Gassman, P.L. 1998Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materialsAm. Mineral.8314261443Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Noemi Chacon
    • 1
    • 2
  • Whendee L. Silver
    • 1
  • Eric A. Dubinsky
    • 1
  • Daniela F. Cusack
    • 1
  1. 1.Ecosystem Sciences Division, Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  2. 2.Lab. Ecología de Suelos, Centro de EcologíaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations