, Volume 75, Issue 3, pp 393–407 | Cite as

The Role of Iron and Dissolved Organic Carbon in the Absorption of Ultraviolet Radiation in Humic Lake Water

  • Kelly O. Maloney
  • Donald P. Morris
  • Carl O. Moses
  • Christopher L. Osburn


Absorption of solar ultraviolet radiation (UVR) in aquatic ecosystems is primarily controlled by dissolved organic carbon (DOC). The role of iron (Fe) has also been suggested to contribute to UVR attenuation either directly or by interactions with DOC. Here we present findings from three laboratory manipulations of Fe and DOC on changes to the dissolved UVR absorption (ad,320) in a mid-latitude, dimictic, humic lake. In a laboratory simulation of lake turnover where anoxic, hypolimnetic water was oxygenated ad,320 significantly increased from 23.3 to 81.7 m−1 (p<0.0001). In a second laboratory experiment, addition of ferrous Fe to deoxygenated lake water increased ad,320 upon reoxygenation up to a concentration of 1.0 mg l−1 Fe, where a solubility saturation threshold may have been reached. In situ lake experiments were designed to simulate release of UV absorbing substances from anoxic sediments by placing 20-l carboys (open at the bottom, sealed at the top) onto the lake bottom. UV absorption at 320 nm increased over time for samples from within the experimental carboys. Finally, samples from several lake profiles and sediment experiments were analyzed for ad,320, total Fe, and DOC. UV absorption of dissolved substances at 320 nm and total Fe concentration both increased with depth, however DOC remained relatively constant over depth. Furthermore, total Fe and spectral slope showed tight coupling up to 1 mg l−1 total Fe in our survey analysis. Our results provide evidence for the importance of anoxic sediments as a source of ferrous iron and UV absorbing substances and suggest a role for ferric iron in increasing UVR and PAR absorption in lake water. We suggest that as this ferrous Fe oxidizes, its absorptive properties increase, and it may bind with dissolved organic matter, enabling it to remain in solution and thus increasing the dissolved absorption of lake water for extended periods of time.


Anoxia Dissolved organic carbon (DOC) Hypolimnion Iron (Fe) Sediment Temperate lake UVR absorbance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzani, V., Carassiti, V. 1970Photochemistry of Coordination ComplexesAcademic PressNew YorkGoogle Scholar
  2. Barbeau, K., Rue, E.L., Bruland, K.W., Butler, A. 2001Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligandsNature413409413CrossRefPubMedGoogle Scholar
  3. Benner, R., Biddanda, B., Black, B., McCarthy, M. 1997Abundancesize distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltrationMar. Chem.57243263CrossRefGoogle Scholar
  4. Benner, R., Hedges, J.I. 1993A test of the accuracy of fresh-water DOC measurements by high-temperature catalytic oxidation and UV-promoted persulfate oxidationMar. Chem.41161165CrossRefGoogle Scholar
  5. Bertilsson, S. 2000Photochemical transformation of dissolved organic matter in lakesLimnol. Oceanogr.45753762Google Scholar
  6. Bertilsson, S., Tranvik, L.J. 1998Photochemically produced carboxylic acids as substrates for freshwater bacterioplanktonLimnol. Oceanogr.43885895Google Scholar
  7. Brezonik, P.L. 1994Chemical Kinetics and Process Dynamics in Aquatic SystemsLewis Publ.Boca Raton, FLGoogle Scholar
  8. Budac, D., Wan, P. 1992Photodecarboxylation – mechanism and synthetic utilityJ. Photochem. Photobiol. A67135166CrossRefGoogle Scholar
  9. Carpenter, P.D., Smith, J.D. 1984Simultaneous spectrophotometric determination of humic acid and iron in waterAnal. Chim. Acta159299308CrossRefGoogle Scholar
  10. Chen, Y., Khan, S.U., Schnitzer, M. 1978Ultraviolet irradiation of dilute fulvic acid solutionSoil Sci. Soc. Am. J.42292296Google Scholar
  11. Dahlen, J., Bertilsson, S., Pettersson, C. 1996Effects of UV-A irradiation on dissolved organic matter in humic surface watersEnviron. Int.22501506CrossRefGoogle Scholar
  12. Drever, J.I. 1997The Geochemistry of Natural Waters3Prentice HallUpper Saddle RiverNew JerseyGoogle Scholar
  13. Emmenegger, L., Schonenberger, R.R., Sigg, L., Sulzberger, B. 2001Light-induced redox cycling of iron in circumneutral lakesLimnol. Oceanogr.464961Google Scholar
  14. Gao, H., Zepp, R.G. 1998Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United StatesEnviron. Sci. Technol.3229402946CrossRefGoogle Scholar
  15. Ghassemi, M., Christman, R.F. 1968Properties of the yellow organic acids of natural watersLimnol. Oceanogr.13583597Google Scholar
  16. Hamilton-Taylor, J., Davison, W., Morfett, K. 1996The biogeochemical cycling of Zn, CuFeMn, and dissolved organic C in a seasonally anoxic lakeLimnol. Oceanogr.41408418Google Scholar
  17. Hansell, D.A., Carlson, C.A. 2002Biogeochemistry of Marine Dissolved Organic MatterAcademic PressSan DiegoCAGoogle Scholar
  18. Hebling E.W. and Zagarese H. 2003. UV effects in aquatic organisms and ecosystems. In: Comprehensive Series in Photochemical and Photobiological Sciences. Royal Society of Chemistry, Cambridge, UK.Google Scholar
  19. Heikkinen, K., Ihme, R. 1995Retention of organic Fe–P-colloids from peat mining water in an overland flow wetland treatment system in northern FinlandArch. Hydrobiol.134547560Google Scholar
  20. Kirk, J.T.O. 1994Light and Photosynthesis in Aquatic Ecosystems2University PressNew York, CambridgeGoogle Scholar
  21. Langmuir, D. 1997Aqueous Environmental Geochemistry, edPrentice-HallUpper Saddle RiverNew JerseyGoogle Scholar
  22. Larson, R.A., Weber, E.J. 1994Reaction Mechanisms in Environmental ChemistryLewis. Publ.Boca Raton, FLGoogle Scholar
  23. Lindell, M.J., Graneli, W., Tranvik, L.J. 1995Enhanced bacterial growth in response to photochemical transformation of dissolved organic matterLimnol. Oceanogr.40195199Google Scholar
  24. Markager, S., Vincent, W.F. 2000Spectral light attenuation and the absorption of UV and blue light in natural watersLimnol. Oceanogr.45642650Google Scholar
  25. McKnight, D.M., Kimball, B.A., Bencala, K.E. 1988Iron photoreduction and oxidation in an acidic mountain streamScience240637640Google Scholar
  26. Miles, C.J., Brezonik, P.L. 1981Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycleEnviron. Sci. Technol.1510891095CrossRefGoogle Scholar
  27. Morris, D.P.,  et al. 1995The attenuation of solar UV radiation and the role of dissolved organic carbonLimnol. Oceanogr.4013811391Google Scholar
  28. Morris, D.P., Hargreaves, B.R. 1997The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono PlateauLimnol. Oceanogr.42239249Google Scholar
  29. Osburn, C.L., Morris, D.P., Thorn, K.A., Moeller, R.E. 2001aChemical and optical changes in freshwater dissolved organic matter exposed to solar radiationBiogeochem.54251178CrossRefGoogle Scholar
  30. Osburn, C.L., Zagarese, H.E., Morris, D.P., Hargreaves, B.R., Cravero, W.E. 2001bCalculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakesLimnol. Oceanogr.4614551467Google Scholar
  31. Pennanen, V., Frisk, T. 1984A statistical model for conversion of absorbance measurements with significant iron interference into organic carbon in a polyhumic lakeAqua Fennica14171178Google Scholar
  32. Peuravuori, J., Pihlaja, K. 1997Isolation and characterization of natural organic matter from lake water: comparison of isolation with solid adsorption and tangential membrane filtrationEnviron. Int.23441451CrossRefGoogle Scholar
  33. Pizarro, J.,  et al. 1995Coagulation/sedimentation of submicron iron particles in a eutrophic lakeWater Res.29617632CrossRefGoogle Scholar
  34. Salonen, K., Vahatalo, A. 1994Photochemical mineralisation of dissolved organic matter in Lake SkjervatjernEnviron. Int.20307312CrossRefGoogle Scholar
  35. Scully, N. M., and D. R. S. Lean (1994) The attenuation of ultraviolet radiation in temperate lakes, In: C. E. Williamson and H. E. Zagarese [eds.], The impact of UV-B radiation on pelagic freshwater ecosystems . Arch. Hydrobiol. Beih. Ergebn. Limnol. (pp. 135--144)Google Scholar
  36. Shapiro, J. 1964Effect of yellow organic acids on iron and other metals in waterJ. Am. Water Works Assoc.5610621082Google Scholar
  37. Shapiro, J. 1966The relation of humic color to iron in natural watersVerh. Int. Verein. Limnol.16477484Google Scholar
  38. Vodacek, A., Blough, N.V., DeGrandpre, M.D., Peltzer, E.T., Nelson, R.K. 1997Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidationLimnol. Oceanogr.42674686Google Scholar
  39. Voelker, B.M., Morel, F.M.M., Sulzberger, B. 1997Iron redox cycling in surface waters: effects of humic substances and lightEnviron. Sci. Technol.31100410011CrossRefGoogle Scholar
  40. Wetzel, R.G. 2001Limnology3Academic PressNew YorkGoogle Scholar
  41. Williamson, C.E., Morris, D.P., Pace, M.L., Olson, O.G. 1999Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigmLimnol. Oceanogr.44795803Google Scholar
  42. Zepp, R.G., Faust, B.C., Hoigne, J. 1992Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen-peroxide – the photo-Fenton reactionEnviron. Sci. Technol.26313319CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kelly O. Maloney
    • 1
    • 2
  • Donald P. Morris
    • 1
  • Carl O. Moses
    • 1
  • Christopher L. Osburn
    • 1
    • 3
  1. 1.Department of Earth and Environmental SciencesLehigh UniversityBethlehemUSA
  2. 2.Department of Biological SciencesAuburn UniversityAuburnUSA
  3. 3.Marine Biogeochemistry Section, Code 6114US Naval Research LaboratoryWashingtonUSA

Personalised recommendations