Advertisement

Biogeochemistry

, Volume 75, Issue 2, pp 217–240 | Cite as

Litter Decomposition and Nutrient Dynamics in a Phosphorus Enriched Everglades Marsh

  • William F. Debusk
  • K. Ramesh Reddy
Article

Abstract

A field study was conducted in a nutrient-impacted marsh in Water Conservation Area 2A (WCA-2A) of the Everglades in southern Florida, USA, to evaluate early stages of plant litter (detritus) decomposition along a well-documented trophic gradient, and to determine the relative importance of environmental factors and substrate composition in governing decomposition rate. Vertically stratified decomposition chambers containing native plant litter (cattail and sawgrass leaves) were placed in the soil and water column along a 10-km transect coinciding with a gradient of soil phosphorus (P) enrichment. Decomposition rate varied significantly along the vertical water–soil profile, with rates typically higher in the water column and litter layer than below the soil surface, presumably in response to vertical gradients of such environmental factors as O2 and nutrient availability. An overall decrease in decomposition rate occurred along the soil P gradient (from high- to low-impact). First-order rate constant (k) values for decomposition ranged from 1.0 to 9.2 × 10−3 day−1 (mean = 2.8 ×10−3 day−1) for cattails, and from 6.7 × 10−4 to 3.0 ×  10−3 day−1 (mean = 1.7 ×  10−3 day−1) for sawgrass. Substantial N and P immobilization occurred within the litter layer, being most pronounced at nutrient-impacted sites. Nutrient content of the decomposing plant tissue was more strongly correlated to decomposition rate than was the nutrient content of the surrounding soil and water. Our experimental results suggest that, although decomposition rate was significantly affected by initial substrate composition, the external supply or availability of nutrients probably played a greater role in controlling decomposition rate. It was also evident that nutrient availability for litter decomposition was not accurately reflected by ambient nutrient concentration, e.g., water and soil porewater nutrient concentration.

Keywords

Decomposition Detritus Everglades Litter Phosphorus Wetland 

Abbreviations

WCA

Water Conservation Area

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D., Melillo, J.M., McClaugherty, C.A. 1990Predicting longterm patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystemsCan. J. Bot.6822012208Google Scholar
  2. Amador, J.A., Jones, R.D. 1993Nutrient limitations on microbial respiration in peat soils with different total phosphorus contentSoil Biol. Biochem.25793801CrossRefGoogle Scholar
  3. Amador, J.A., Jones, R.D. 1995Carbon mineralization in the pristine and phosphorusenriched peat soils of the Florida EvergladesSoil Sci.159129141Google Scholar
  4. Anderson, J.M. 1976An ignition method for determination of total phosphorus in lake sedimentsWater Res.10329331CrossRefGoogle Scholar
  5. Bremner, J.M., Mulvaney, C.S. 1982NitrogentotalPage, A.L. eds. Methods of Soil Analysis, Part 2American Society of Agronomy – Soil Science Society of AmericaMadison, WI595624Google Scholar
  6. Bridgham, S.D., Updegraff, K., Pastor, J. 2001A comparison of nutrient availability indices along an ombrotrophic–minerotrophic gradient in Minnesota wetlandsSoil Sci. Soc. Am. J.65259269Google Scholar
  7. Clymo, R.S. 1983PeatGore, A.J.P. eds. Mires: Swamp, Bog, Fen and MoorElsevierAmsterdam159224Google Scholar
  8. Cooper, S.R., Huvane, J., Vaithiyanathan, P., Richardson, C.J. 1999Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area 2AUSAJ. Paleolimnol.22413437CrossRefGoogle Scholar
  9. Dȁ9Angelo, E.M., Reddy, K.R. 1999Regulators of heterotrophic microbial potentials in wetland soilsSoil Biol. Biochem.31815830CrossRefGoogle Scholar
  10. Davis, S.M. 1991Growthdecomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida EvergladesAquat. Bot.40203224CrossRefGoogle Scholar
  11. DeBusk, W.F., Reddy, K.R. 2003Nutrient and hydrology effects on soil respiration in a northern Everglades marshJ. Environ. Qual.32702710PubMedGoogle Scholar
  12. DeBusk, W.F., Newman, S., Reddy, K.R. 2001Spatio-temporal patterns of soil phosphorus enrichment in Everglades WCA-2AJ. Environ. Qual.3014381446PubMedGoogle Scholar
  13. DeBusk, W.F., Reddy, K.R. 1998Turnover of detrital organic carbon in a nutrient-impacted Everglades marshSoil Sci. Soc. Am. J.6214601468Google Scholar
  14. DeBusk, W.F., Reddy, K.R., Koch, M.S., Wang, Y. 1994Spatial distribution of soil nutrients in a northern Everglades marsh: Water Conservation Area 2ASoil Sci. Soc. Am. J.58543552Google Scholar
  15. Drake, H.L., Aumen, N.G., Kuhner, C., Wagner, C., Grießhammer, A., Schmittroth, M. 1996Anaerobic microflora of Everglades sediments: effects of nutrients on population profiles and activitiesAppl. Environ. Microbiol.62486493Google Scholar
  16. Gleason, P.J., Cohen, A.D., Brooks, H.K., Stone, P., Goodrick, R., Smith, W.G., Spackman, W.,Jr. 1974The environmental significance of Holocene sediments from the Everglades and saline tidal plainGleason, P.J. eds. Environments of South Florida: Present and PastMiami Geological SocietyMiamiFlorida287341Google Scholar
  17. Godshalk, G.L., Wetzel, R.G. 1978Decomposition of aquatic angiosperms. II. Particulate componentsAquat. Bot.5301327CrossRefGoogle Scholar
  18. Heal, O.W., Flanagan, P.W., French, D.D., MacLean, S.F.,Jr. 1981Decomposition and accumulation of organic matterBliss, L.C.Heal, O.W.Moore, J.J. eds. Tundra Ecosystems: A Comparative AnalysisCambridge University PressCambridge587633Google Scholar
  19. Jenkinson, D.S., Rayner, J.H. 1977The turnover of soil organic matter in some of the Rothamsted classical experimentsSoil Sci.123298305Google Scholar
  20. Jensen, J.R., Rutchey, K., Koch, M.S., Narumalani, S. 1995Inland wetland change detection in the Everglades Water Conservation Area 2A using a time series of normalized remotely sensed dataPhotogram. Eng. Remote Sens.61199209Google Scholar
  21. Koch, M.S., Reddy, K.R. 1992Distribution of soil and plant nutrients along a trophic gradient in the Florida EvergladesSoil Sci. Soc. Am. J.5614921499Google Scholar
  22. McCormick, P.V., Shuford, R.B.E., Backus, J.G., Kennedy, W.C. 1998Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, FloridaUSAHydrobiologia362185208CrossRefGoogle Scholar
  23. McCormick, P.V., Stevenson, R.J. 1998Periphyton as a tool for ecological assessment and management in the Florida EvergladesJ. Phycol.34726733CrossRefGoogle Scholar
  24. Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B., Nadelhoffer, K.J. 1989Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matterPlant Soil115189198CrossRefGoogle Scholar
  25. Melillo, J.M., Aber, J.D., Muratore, J.F. 1982Nitrogen and lignin control of hardwood leaf litter decomposition dynamicsEcology63621626Google Scholar
  26. Melillo, J.M., Naiman, R.J., Aber, J.D., Linkins, A.E. 1984Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streamsBull. Mar. Sci.35341356Google Scholar
  27. Miao, S.L., DeBusk, W.F. 1999Effects of phosphorous enrichment on structure and function of plant communities in Florida wetlandsReddy, K.R.O'Connor, G.A.Schelske, C.L. eds. Phosphorus Biogeochemistry in Subtropical EcosystemsLewis PublishersBoca Raton, Florida275299Google Scholar
  28. Miao, S.L., Sklar, F.H. 1998Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida EvergladesWetlands Ecol. Manage.5245263CrossRefGoogle Scholar
  29. Moore, T.R., Dalva, M. 1993The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soilsJ. Soil Sci.44651654Google Scholar
  30. Moran, M.A., Benner, R., Hodson, R.E. 1989Kinetics of microbial degradation of vascular plant material in two wetland ecosystemsOecologia79158167CrossRefGoogle Scholar
  31. Newman, S., Schuette, J., Grace, J.B., Rutchey, K., Fontaine, T., Reddy, K.R., Pietrucha, M. 1998Factors influencing cattail abundance in the northern EvergladesAquat. Bot.60265280CrossRefGoogle Scholar
  32. Paul, E.A. 1984Dynamics of organic matter in soilsPlant Soil76275285CrossRefGoogle Scholar
  33. Reddy, K.R., D'Angelo, E.M. 1994Soil processes regulating water quality in wetlandsMitsch, W.J. eds. Global Wetlands: Old World and NewElsevier ScienceAmsterdam309324Google Scholar
  34. Richardson, C.J., Ferrell, G.M., Vaithiyanathan, P. 1999Nutrient effects on stand structureresorption efficiency, and secondary compounds in Everglades sawgrassEcology8021822192Google Scholar
  35. Schipper, L.A., Reddy, K.R. 1995In situ determination of detrital breakdown in wetland soilfloodwater profileSoil Sci. Soc. Am. J.59565568Google Scholar
  36. South Florida Water Management District (SFWMD)1996Hydrometeorological Database (DBHYDRO)South Florida Water Management DistrictWest Palm BeachGoogle Scholar
  37. Swift, M.J., Heal, O.W., Anderson, J.M. 1979Decomposition in Terrestrial EcosystemsUniversity of California PressBerkeleyGoogle Scholar
  38. Swift D.R. and Nicholas R.B. 1987. Periphyton and water quality relationships in the Everglades Water Conservation Areas. Technical Publication 87-2. South Florida Water Management DistrictWest Palm Beach. Google Scholar
  39. Tate, R.L.,III 1979Effect of flooding on microbial activities in organic soils: carbon metabolismSoil Sci.128267273Google Scholar
  40. U. S. Environmental Protection Agency (USEPA)1983Methods for Chemical Analysis of Water and WastesEnvironment Monitoring and Support LaboratoryCincinnatiOhioGoogle Scholar
  41. Vaithiyanathan, P., Richardson, C.J. 1999Macrophyte species changes in the Everglades: examination along a eutrophication gradientJ. Environ. Qual.2813471358Google Scholar
  42. Webster, J.R., Benfield, E.F. 1986Vascular plant breakdown in freshwater ecosystemsAnn. Rev. Ecol. Syst.17567594CrossRefGoogle Scholar
  43. White, J.R., Reddy, K.R. 2000The effects of phosphorus loading on organic nitrogen mineralization of soils and detritus along a nutrient gradient in the northern Everglades, FloridaSoil Sci. Soc. Am. J.6415251534Google Scholar
  44. Wright, A.L., Reddy, K.R. 2001Heterotrophic microbial activity in northern Everglades wetland soilsSoil Sci. Soc. Am J.6518561864Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.West Florida Research and Education CenterUniversity of FloridaMiltonUSA
  2. 2.Soil and Water Science DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations