, Volume 74, Issue 1, pp 63–99 | Cite as

Identifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotope, alkaline earth element multi-tracer approach



Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible alternative explanations of aspects of the observed trends, the chemical buffering capacity of the forest floor-biomass pool limits their effectiveness as causal mechanisms.


Alkaline earth elements Calcium Forest soils Nutrients Red spruce Strontium isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aberg, G., Jacks, G., Hamilton, P.J. 1989Weathering rates and 87Sr/86Sr ratios: an isotopic approachJ. Hydrol.1096578CrossRefGoogle Scholar
  2. 2.
    Aberg, G., Jacks, G., Wickman, T., Hamilton, P.J. 1990Strontium isotopes in trees as an indicator of calcium availabilityCatena17111CrossRefGoogle Scholar
  3. 3.
    Arthur, M.A., Siccama, T.G., Yanai, R.D. 1999Calcium and magnesium in wood of six northern hardwood species: relations to site characteristicsCan. J. Forest Res.29339346CrossRefGoogle Scholar
  4. 4.
    Bailey S.W. and Hornbeck J.W. 1992. Lithologic composition and rock weathering potential of forestedglacial-till soils. RadnorPAU.S. Dep. Agric. Forest Serv., Northeast For. Exp. Stn.Google Scholar
  5. 5.
    Bailey, S.W., Hornbeck, J.W., Driscoll, C.T., Gaudette, H.E. 1996Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopesWater Resour. Res.32707719CrossRefGoogle Scholar
  6. 6.
    Bailey, S.W., Buso, D.C., Likens, G.E. 2003Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystemEcology84471484Google Scholar
  7. 7.
    Blum, J.D., Klaue, A., Nezat, C.A., Driscoll, C.T., Johnson, C.E., Siccama, T.G., Eagar, C., Fahey, T.J., Likens, G.E. 2002Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystemsNature417729731CrossRefPubMedGoogle Scholar
  8. 8.
    Blum, J.D., Klaue, A., Nezat, C.A., Driscoll, C.T., Johnson, C.E., Siccama, T.G., Eagar, C., Fahey, T.J., Likens, G.E. 2003“Blum Reply” to Watmough and Dillon, 2003Nature423824CrossRefGoogle Scholar
  9. 9.
    Bondietti, E.A., Baes, C.F.I., McLaughlin, S.B. 1989Radial trends in cation ratios in tree rings as indicators of the impact of atmospheric deposition on forestsCan. J. For. Res.19586594Google Scholar
  10. 10.
    Buso D.C., Bailey S.W., Baird S.F., Hornbeck J.W. and Martin C.W. 1985. Watershed Interactions Affecting Pond Acidification. New Hampshire Water Resources Research Center, 61 pp.Google Scholar
  11. 11.
    Bullen, T.D., White, A.F., Huntington, T.G., Peters, N.E. 1999A new approach for determining the 87Sr/86Sr ratio of the “granitod weathering component”Armannsson, H. eds. Proceedings of the 5th International Symposium on Geochemistry of the Earth’s SurfaceBalkemaRotterdam369372Google Scholar
  12. 12.
    Cogbill, C.V., Likens, G.E. 1974Acid Precipitation in the Northeastern United StatesWater Resour. Res.101331137Google Scholar
  13. 13.
    DeHayes, D.H., Schaberg, P.G., Hawley, G.J., Strimbeck, G.R. 1999Acid rain impacts calcium nutrition and forest healthBioScience49789800Google Scholar
  14. 14.
    Elias, R.W., Hirao, Y., Patterson, C.C. 1982The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial leadGeochim. Cosmochim. Acta4625612580CrossRefGoogle Scholar
  15. 15.
    Hamburg, S.P., Yanai, R.D., Arthur, M.A., Blum, J.D., Siccama, T.G. 2003Biotic control of calcium cycling in northern hardwood forests: acid rain and aging forestsEcosystems6399406CrossRefGoogle Scholar
  16. 16.
    Huntington, T.G. 2000The potential for calcium depletion in forest ecosystems of southeastern United States: review and analysisGlob. Biogeochem. Cycles.14623638CrossRefGoogle Scholar
  17. 17.
    Hyman, M.E., Johnson, C.E., Bailey, S.W., April, R.H., Hornbeck, J.W. 1998Chemical weathering and cation loss in a base-poor watershedGeol. Soc. Am. Bull.1108595CrossRefGoogle Scholar
  18. 18.
    Jenny, H., Reitemeier, R.F. 1935Ionic exchange in relation to the stability of colloidal systemsJ. Phys. Chem.39593604CrossRefGoogle Scholar
  19. 19.
    Johnson, A.H., Andersen, S.B., Siccama, T.G. 1994Acid rain and soils of the Adirondacks: 1. Changes in pH and available calcium 1930–1984Can. J. Forest Res.243945Google Scholar
  20. 20.
    Joslin, J.D., Wolfe, M.H. 1992Red spruce soil solution chemistry and root distribution across a cloud water deposition gradientCan. J. Forest Res.22893904Google Scholar
  21. 51.
    Junge, C.E., Werby, R.T. 1958The concentration of chloridesodiumpotassiumcalcium and sulfate in rain water over the United StatesJ. Meteorol.15417425Google Scholar
  22. 21.
    Kennedy, M.J., Hedin, L.O., Derry, L.A. 2002Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer additionPNAS9996399644CrossRefPubMedGoogle Scholar
  23. 22.
    Lawrence, G.B., David, M.B., Shortle, W.C. 1995A new mechanism for calcium loss in forest-floor soilsNature378162165CrossRefGoogle Scholar
  24. 23.
    Lawrence, G.B., David, M.B., Bailey, S.W., Shortle, W.C. 1997Assessment of soil calcium status in red spruce forests in the northeastern United StatesBiogeochemistry381939CrossRefGoogle Scholar
  25. 24.
    Likens, G.E., Driscoll, C.T., Buso, D.C. 1996Long-term effects of acid rain: response and recovery of a forest ecosystemScience272244246Google Scholar
  26. 25.
    Likens, G.E., Driscoll, C.T., Buso, D.C., Siccama, T.G., Johnson, C.E., Lovett, G.M., Fahey, T.J., Reiners, W.A., Ryan, D.F., Martin, C.W., Bailey, S.W. 1998The biogeochemistry of calcium at Hubbard BrookBiogeochemistry4189173CrossRefGoogle Scholar
  27. 26.
    Markewitz, D., Richter, D.D., Allen, H.L., Urrego, J.B. 1998Three decades of observed soil acidification in the Calhoun Experimental Forest: has acid rain made a difference?Soil Sci. Soc. Am. J.6214281439Google Scholar
  28. 27.
    Mayewski, P.A., Lyons, W.B., Spencer, M.J., Twickler, M., Dansgaard, W., Koci, B., Davidson, C.I., Honrath, R.E. 1986Sulfate and nitrate concentrations from a south Greenland ice coreScience232975977Google Scholar
  29. 28.
    Miller, E.K., Blum, J.D., Friedland, A.J. 1993Determination of soil exchangeable-cation loss and weathering rates using Sr isotopesNature362438441CrossRefGoogle Scholar
  30. 29.
    Mitchell, M.J., Driscoll, C.T., Kahl, J.S., Likens, G.E., Murdoch, P.S., Pardo, L.H. 1998Climatic control of nitrate loss from forested watersheds in the northeast United StatesEnviron. Sci. Tech.3026092612CrossRefGoogle Scholar
  31. 30.
    Momoshima, N., Bondietti, E.A. 1990Cation binding in wood: applications to understanding historical changes in divalent cation availability to red spruceCan. J. For. Res.2018401849Google Scholar
  32. 31.
    Nadelhoffer, K., Shaver, G., Fry, B., Giblin, A., Johnson, L., McKane, R. 1996N-15 natural abundances and N use by tundra plantsOecologia107386394CrossRefGoogle Scholar
  33. 32.
    NAPAP 1993. 1992 Report to Congress: Washington, DC, National Acid Precipitation Assessment Program.Google Scholar
  34. 33.
    Nezat C.A., Blum J.D., Klaue A., Johnson C.E. and Siccama T.G., 2004. Influence of landscape position and vegetation on long-term weathering rates at the Hubbard Brook Experimental ForestNew HampshireUSA. Geochim. Cosmochim. Acta 68(14): 3065–3078.Google Scholar
  35. 34.
    Ostrofsky, A., Jellison, J., Smith, K.T., Shortle, W.C. 1997Changes in cation concentration in red spruce wood decayed by brown rot and white rot fungiCan. J. For. Res.27567571CrossRefGoogle Scholar
  36. 35.
    Poszwa, A., Dambrine, E., Pollier, B., Atteia, O. 2000A comparison between Ca and Sr cycling in forest ecosystemsPlant Soil225299310CrossRefGoogle Scholar
  37. 36.
    Reams, G.A., VanDuesen, P.C. 1995Reply: synchronic large-scale disturbances and red spruce growth declineCan. J. For. Res.25859869Google Scholar
  38. 37.
    Shortle, W.C., Smith, K.T. 1988Aluminum-induced calcium deficiency syndrome in declining red spruceScience24010171018Google Scholar
  39. 38.
    Shortle, W.C., Bondietti, E.A. 1992Timing, magnitudeand impact of acidic deposition on sensitive forest sitesWater Air Soil Pollut.61253267CrossRefGoogle Scholar
  40. 39.
    Shortle, W.C., Smith, K.T., Minocha, R., Alexeyev, V.A. 1995Similar patterns of change in stemwood calcium concentration in red spruce and Siberian firJ. Biogeogr.22467473Google Scholar
  41. 40.
    Shortle, W.C., Smith, K.T., Minocha, R., Lawrence, G.B., David, M.B. 1997Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruceJ. Environ. Qual.26871876Google Scholar
  42. 42.
    Smith, K.T., Shortle, W.C. 2001Conservation of element concentration in xylem sap of red spruceTrees15148153CrossRefGoogle Scholar
  43. 43.
    Smith, K.T., Shortle, W.C., Ostrofsky, W.D. 1995Aluminum and calcium in fine root tips of red spruce collected from the forest floorCan. J. For. Res.2512371242Google Scholar
  44. 44.
    Suarez, D.L.,  et al. 1996Berylliummagnesiumcalciumstrontiumand bariumSparks, D.L. eds. Methods of Soil Analysis Part 3 Chemical MethodsSoil Science Society of America Book Series 5Madison, WIGoogle Scholar
  45. 45.
    Thornton, F.C., Schaedle, M., Raynal, D.J. 1987Effects of aluminum on red spruce seedlings in solution cultureEnviron. Exp. Bot.27489495CrossRefGoogle Scholar
  46. 46.
    Van Breeman, N., Finlay, R., Lundstrom, U., Jongmans, A.G., Giesler, R., Olsson, M. 2000Mycorrhizal weathering: a true case of mineral plant nutrition?Biogeochemistry495367CrossRefGoogle Scholar
  47. 47.
    Wallander, H. 2000Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungiPlant Soil218249256CrossRefGoogle Scholar
  48. 48.
    Wallander, H., Johansson, L., Pallon, J. 2002PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soilFEMS Microbiol. Ecol.1320110Google Scholar
  49. 49.
    Watmough, S.A., Dillon, P.J. 2003Mycorrhizal weathering in base-poor forestsNature423823824CrossRefGoogle Scholar
  50. 50.
    White, P.S., Cogbill, C.V. 1992Spruce-fir forests of eastern North AmericaEagar, C.Adams, M.B. eds. Ecology and Decline of Red Spruce in the Eastern United StatesSpringer VerlagNew YorkGoogle Scholar
  51. 51.
    Yanai, R.D., Siccama, T.G., Arthur, M.A., Federer, C.A., Friedland, A.J. 1999Accumulation and depletion of base cations in forest floors in the northeastern United StatesEcology8027742787Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo ParkUSA
  2. 2.U.S.D.A. Forest ServiceDurhamUSA

Personalised recommendations