Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing

Abstract

Municipal solid waste landfills are widely used as a waste management tool and landfill microbiology is at the core of waste degradation in these ecosystems. This review investigates the microbiology of municipal solid waste landfills, focusing on the current state of knowledge pertaining to microbial diversity and functions facilitating in situ waste bioprocessing, as well as ecological factors influencing microbial dynamics in landfills. Bioprocessing of waste in municipal landfills emanates from substrate metabolism and co-metabolism by several syntrophic microorganisms, resulting in partial transformation of complex substrates into simpler polymeric compounds and complete mineralisation into inorganic salts, water and gases including the biofuel gas methane. The substrate decomposition is characterised by evolution and interactions of different bacterial, archaeal and fungal groups due to prevailing biotic and abiotic conditions in the landfills, allowing for hydrolytic, fermentative, acetogenic and methanogenic processes to occur. Application of metagenomics studies based on high throughput Next Generation Sequencing technique has advanced research on profiling of the microbial communities in municipal solid waste landfills. However, functional diversity and bioprocess dynamics, as well as key factors influencing the in situ bioprocesses involved in landfill waste degradation; the very elements that are key in determining the efficiency of municipal landfills as tools of waste management, remain ambiguous. Such gaps also hinder progressive understanding of fundamentals that underlie technology development based on waste biodegradation, and exploration of municipal waste as a bioresource.

This is a preview of subscription content, access via your institution.

Fig. 1

Adapted from Sang et al. (2012)

Fig. 2

References

  1. Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand—conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  2. Bareither CA, Wolfe GL, McMahon KD, Benson CH (2013) Microbial diversity and dynamics during methane production from municipal waste. Waste Manag 33:1982–1992

    CAS  PubMed  Google Scholar 

  3. Barlaz MA, Schaefer DM, Ham RK (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55:55–65

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barlaz MA, Ham RK, Schaefer DM, Isaacson R (2009) Methane production from municipal refuse: a review of enhanced techniques and microbial dynamics. Crit Rev Environ Sci Technol 19:557–584

    Google Scholar 

  5. Bastida F, Kandeler E, Hernández T, García C (2008) Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb Ecol 55:651–661

    PubMed  Google Scholar 

  6. Beeman RE, Suflita JM (1987) Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate. Microb Ecol 14:39–54

    CAS  PubMed  Google Scholar 

  7. Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    CAS  PubMed  Google Scholar 

  8. Buivid MG, Wise DL, Blanchet MJ, Remedios EC, Jenkins BM (1981) Fuel gas enhancement by controlled landfilling of municipal solid waste. Resour Conserv 6:3–20

    CAS  Google Scholar 

  9. Cardinalli-Rendez J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL (2012) Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Biores Technol 229:373–383

    Google Scholar 

  10. Cardinalli-Rendez J, Rojas-Ojeda P, Nascimento AMA, Sanz JL (2016) Proteolytic bacterial dominance in a full-scale municipal solid waste anaerobic reactor assessed by 454 pyrosequencing technology. Chemosphere 146:519–525

    Google Scholar 

  11. Chen YC (2016) Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach. Waste Manag 58:408–414

    CAS  PubMed  Google Scholar 

  12. Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003a) Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotech Lett 25:1563–1569

    CAS  Google Scholar 

  13. Chen AC, Imachi H, Sekiguchi Y, Ohashi A, Harada H (2003b) Achaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol Lett 25:719–724

    CAS  PubMed  Google Scholar 

  14. Chroni C, Kyriacou A, Georgaki I, Manios T, Kotsou M, Lasaridi K (2009) Microbial characterization during composting of biowaste. Waste Manag 29:1520–1525

    CAS  PubMed  Google Scholar 

  15. Cossu R, Morello L, Raga R, Cerminara G (2016) Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Manag 55:83–92

    CAS  PubMed  Google Scholar 

  16. Cuadros-Orellana S, Leite LR, Smith A, Medeiros JD, Badotti F, Fonseca PLC, Vaz ABM, Oliveira G, Goes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genomics and Biology 3:110

    Google Scholar 

  17. Dao HTN, Kuroda K, Nakahara N, Danshita T, Hatamoto M, Yamaguchi T (2016) 16S rRNA gene-based comprehensive analysis of microbial community compositions in a full-scale leachate treatment system. J Biosci Bioeng 122:708–715

    CAS  PubMed  Google Scholar 

  18. Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–14

    Google Scholar 

  19. Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerova K (2015) Anaerobic fungi and their potential for biogas production. In: Guebitz GM, Bauer A, Bochmann G, Gronauer A, Weiss S (eds) Biogas science and technology. Springer, London, pp 1–200

    Google Scholar 

  20. Ejlertsson J, Johansson E, Karlsson A, Meyerson E, Svensson H (1996) Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Antonie Van Leeuwenhoek 69:6–74

    Google Scholar 

  21. Fang CR, Yao J, Zheng Y-G, Jiang C-J, Hua L-F, Wu Y-Y, Shen DS (2010) Dibutyl phthalate degradation by Enterobacter sp. T5 isolated from municipal solid waste in landfill bioreactor. Int Biodeterior Biodegrad 64:442–446

    CAS  Google Scholar 

  22. Fei X, Zekkos D, Raskin L (2015) Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste. Waste Manag 36:184–190

    CAS  PubMed  Google Scholar 

  23. Fernandez-Gonzalez JM, Grindlay AL, Serrano-Bernardo F, Rodríguez-Rojas MI, Zamorano M (2017) Economic and environmental review of waste-to-energy systems for municipal solid waste management in medium and small municipalities. Waste Manag 67:360–374

    CAS  PubMed  Google Scholar 

  24. Finlay BJ, Fenchel T (1991) An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol Ecol 85:169–180

    Google Scholar 

  25. Fourie ABJ, Morris WF (2004) Measured gas emissions from four landfills in South Africa and some implications for landfill design and methane recovery in semi-arid climates. Waste Manag Res 22:440–453

    CAS  PubMed  Google Scholar 

  26. Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I (2014) Changes in the microbial communities during co-composting of digestates. Waste Manag 34:632–641

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    CAS  Google Scholar 

  28. Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2011) Isolation, identification and culturing optimization of indigenous fungal isolates as a potential bioconversion agent of municipal solid waste. Ann Environ Sci 5:23–34

    CAS  Google Scholar 

  29. Gautam SP, Bundela PS, Pandey X, Jamaluddin AK, Awasthi MK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 2012:1–12

    Google Scholar 

  30. Ge S, Liu L, Xue Q, Yuan Z (2016) Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors. Waste Manag 55:93–98

    CAS  PubMed  Google Scholar 

  31. Gomez AM, Yannarell AC, Sims GK, Cadavid-Restrepo G, Herrera CXM (2011) Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biol Biochem 43:1275–1284

    CAS  Google Scholar 

  32. Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1:181–185

    PubMed  PubMed Central  Google Scholar 

  33. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17

    CAS  PubMed  Google Scholar 

  34. Gupta J, Rathour R, Kumar M, Thakur IS (2017) Metagenomic analysis of microbial diversity in landfill lysimeter soil of Ghazipur Landfill Site, New Delhi, India. Genome Announc 5:01104

    Google Scholar 

  35. Hamad I, Ranque S, Azhar EI, Yasir M, Jiman-Fatani AA, Tissot-Dupont H, Raoult D, Bittar F (2017) Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci Rep 7:16788

    PubMed  PubMed Central  Google Scholar 

  36. Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A (2001) Microbial characterisation during composting of municipal solid waste. Biores Technol 80:217–225

    CAS  Google Scholar 

  37. He Y, Xie K, Xu P, Huang X, Gu W, Zhang F, Tang S (2013) Evolution of microbial community diversity and enzymatic activity during composting. Res Microbiol 164:189–198

    CAS  PubMed  Google Scholar 

  38. Hrad M, Huber-Humer M (2017) Performance and completion assessment of an in-situ aerated municipal solid waste landfill—final scientific documentation of an Austrian case study. Waste Manag 63:397–409

    PubMed  Google Scholar 

  39. Huang L-N, Zhou H, Chen Y-Q, Luo S, Lan C-Y, Qu L-H (2002) Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Ecol 214:235–240

    CAS  Google Scholar 

  40. Huang L-N, Chen Y-Q, Zhou H, Luo S, Lan C-Y, Quo L (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177

    CAS  PubMed  Google Scholar 

  41. Huang L-N, Zhou H, Zhu S, Qu L-H (2004) Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbiol Ecol 50:175–183

    CAS  PubMed  Google Scholar 

  42. Huang L-N, Zhu S, Zhou H, Qu L-H (2005) Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242:297–303

    CAS  PubMed  Google Scholar 

  43. Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Biores Technol 143:525–530

    CAS  Google Scholar 

  44. Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS (2018) Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 40:89–110

    Google Scholar 

  45. Kallistova AU, Kevbrina MV, Nekrasova VK, Shnyrev NA, Einola J-KM, Kulomaa MS, Rintala JA, Nozhevnikova AN (2007) Enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill. Microb Ecol 54:637–645

    PubMed  Google Scholar 

  46. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kayhanian M (1995) Biodegradability of the organic fraction of municipal solid waste in a high-solids anaerobic digester. Waste Manag Res 13:123–136

    CAS  Google Scholar 

  48. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7(744):1–16

    Google Scholar 

  49. Kielak AM, Castellane TCL, Campanharo JC, Colnago LA, Costa OYA, da Silva MLC, van Veen JA, Lemos EGM, Kuramae EE (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 7:41193

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336

    CAS  Google Scholar 

  51. Korai MS, Mahar RB, Uqaili MA (2017) The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renew Sustain Energy Rev 72:338–353

    CAS  Google Scholar 

  52. Krishnamurthi S, Chakrabarti T (2013) Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst Appl Microbiol 36:56–68

    CAS  PubMed  Google Scholar 

  53. Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag 69:407–422

    CAS  PubMed  Google Scholar 

  54. Kumar S, Chiemchaisri C, Mudhoo A (2011) Bioreactor landfill technology in municipal solid waste treatment: an overview. Crit Rev Biotechnol 31:77–97

    CAS  PubMed  Google Scholar 

  55. Laloui-Carpentier W, Li T, Vigneron V, Mazéas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek 89:423–434

    PubMed  Google Scholar 

  56. Lenhart K, Bunge B, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046

    PubMed  Google Scholar 

  57. Leven L, Eriksson ARB, Schnurer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    CAS  PubMed  Google Scholar 

  58. Liu Y, Xing P, Liu J (2017) Environmental performance evaluation of different municipal solid waste management scenarios in China. Resour Conserv Recycl 125:98–106

    Google Scholar 

  59. Lockhart RJ, Van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ (2006) Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 72:5659–5661

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lopes dos Santos A, Peixoto R, Rosado AS (2009) New approaches to understanding microbial diversity in wastewater, landfills and leachate treatment. Oecol Brasiliensis 13:631–648

    Google Scholar 

  61. Lou J, Yang L, Wang H, Wu L, Xu J (2018) Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification. PeerJ 6:e4514

    PubMed  PubMed Central  Google Scholar 

  62. Lu MC, Chen YY, Chiou MR, Chen MY, Fan HJ (2016) Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Manag 55:257–264

    CAS  PubMed  Google Scholar 

  63. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    CAS  PubMed  Google Scholar 

  64. Malinauskaite J, Jouhara H, Czajczynska D, Stanchev P, Katsou E, Rostkowski P, Thorne RJ, Colon RJ, Ponsa S, Al-Mansour F, Anguilano L, Krzyzynska R, Lopez IC, Vlasopoulos A, Spencer N (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 141:2013–2044

    Google Scholar 

  65. Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P (2017) Review: Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83

    CAS  Google Scholar 

  66. Mazzei L, Musiani F, Ciurli S (2017) Urease. In: Zamble D, Rowińska-Żyrek M, Kozłowski H (eds) RSC metallobiology. Royal Society of Chemistry, London.

    Google Scholar 

  67. McDonald JE, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008) Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR. Environ Microbiol 10:1310–1319

    CAS  PubMed  Google Scholar 

  68. McDonald JE, Allison HE, McCarthy AJ (2010) Composition of the landfill microbial community as determined by application of domain- and group-specific 16S and 18S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 76:1301–1306

    CAS  PubMed  Google Scholar 

  69. McDonald JE, Houghton JNI, Rooks DJ, Allison HE, McCarthy AJ (2012) The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for Fibrobacters. Environ Microbiol 14:1077–1087

    CAS  PubMed  Google Scholar 

  70. Moya D, Aldásb C, Lópeza G, Kaparajuc P (2017) Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using waste-to-energy technologies. Energy Procedia 134:286–295

    Google Scholar 

  71. Muenmee S, Chiemchaisri W, Chiemchaisri C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255

    CAS  Google Scholar 

  72. Musson SE, Townsend GT (2009) Pharmaceutical compound content of municipal solid waste. J Hazard Mater 162:730–735

    CAS  PubMed  Google Scholar 

  73. Mwaikono KS, Maina S, Sebastian A, Schilling M, Kapur V, Gwakisa P (2016) High-throughput sequencing of 16S rRNA gene reveals substantial bacterial diversity on the municipal dumpsite. BMC Microbiol 16:145–157

    PubMed  PubMed Central  Google Scholar 

  74. Naveen BP, Mahapatra DM, Sitharam TG, Sivapullaiah PV, Ramachandra TV (2017) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 220:1–12

    CAS  PubMed  Google Scholar 

  75. Noor ZZ, Yusuf RO, Abba AH, Hassan MAA, Din MFM (2013) An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew Sustain Energy Rev 20:378–384

    Google Scholar 

  76. O’Dwyer J, Walshe D, Byrne KA (2018) Wood waste decomposition in landfills: an assessment of current knowledge and implications for emissions reporting. Waste Manag 73:181–188

    PubMed  Google Scholar 

  77. Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos I (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:75–88

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Patil BS, Agnes AC, Singh DN (2017) Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag Res 3:301–312

    Google Scholar 

  79. Perez-Leblic MI, Turmero A, Hernández M, Hernández AJ, Pastor J, Ball AS, Rodríguez J, Arias ME (2012) Influence of xenobiotic contaminants on landfill soil microbial activity and diversity. J Environ Manag 95:S285–S290

    CAS  Google Scholar 

  80. Pignataro A, Moscatelli MC, Mocali S, Grego S, Benedettia A (2012) Assessment of soil microbial functional diversity in a coppiced forest system. Appl Soil Ecol 62:115–123

    Google Scholar 

  81. Poggi-Varaldo HM, Rodriguez-Vazquez R, Fernandez-Villagomez G, Esparza-Garcia F (1997) Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Appl Microbiol Biotechnol 47:284–291

    CAS  Google Scholar 

  82. Pourcher AM, Sutra L, Hébé I, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiol Ecol 34:229–241

    CAS  PubMed  Google Scholar 

  83. Pubule J, Blumberga A, Romagnoli F, Blumberga D (2015) Finding an optimal solution for biowaste management in the Baltic States. J Clean Prod 88:214–223

    Google Scholar 

  84. Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172

    CAS  PubMed  Google Scholar 

  85. Rajaeifar MA, Ghanavati H, Dashti BB, Heijungs R, Aghbashlo M, Tabatabaei M (2017) Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review. Renew Sustain Energy Rev 79:414–439

    Google Scholar 

  86. Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281

    CAS  PubMed  Google Scholar 

  87. Reinhart DR, Al-Yousfi AB (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14:337–346

    CAS  Google Scholar 

  88. Rolf D (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Google Scholar 

  89. Sang NN, Soda S, Ishigaki T, Ike M (2012) Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J Biosci Bioeng 114:243–250

    PubMed  Google Scholar 

  90. Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M (2010) Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng 109:130–137

    CAS  PubMed  Google Scholar 

  91. Sekhohola LM, Igbinigie EE, Cowan AK (2013) Biological degradation and solubilisation of coal. Biodegradation 24:305–318

    CAS  PubMed  Google Scholar 

  92. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: An overview. Indian J Clin Biochem 29:269–278

    CAS  PubMed  Google Scholar 

  93. Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomics data. Front Plant Sci 5:1–14

    Google Scholar 

  94. Shen D, Yin J, Yu X, Wang M, Long Y, Shentu J, Chen T (2017) Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Biores Technol 227:125–132

    CAS  Google Scholar 

  95. Sinclair L (2016) Molecular methods for microbial ecology: Developments, applications and results. PhD thesis, Uppsala University, Uppsala.

  96. Singh CK, Kumar A, Roy SS (2018) Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci Rep 8:2913

    PubMed  PubMed Central  Google Scholar 

  97. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Biores Technol 127:500–507

    CAS  Google Scholar 

  98. Sivaramanan S (2014) Isolation of cellulolytic fungi and their degradation on cellulosic agricultural wastes. J Acad Ind Res 2:458–463

    CAS  Google Scholar 

  99. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2018) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 69:10–20

    CAS  Google Scholar 

  100. Song L, Wang Y, Tang W, Lei Y (2015a) Archaeal community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:6125–6137

    CAS  PubMed  Google Scholar 

  101. Song L, Wang Y, Tang W, Lei Y (2015b) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:7745–7756

    CAS  PubMed  Google Scholar 

  102. Song L, Wang Y, Zhao H, Long DT (2015c) Composition of bacterial and archaeal communities during landfill refuse decomposition processes. Microbiol Res 181:105–111

    PubMed  Google Scholar 

  103. Stamps BW, Lyles CN, Suflita JM, Masoner JR, Cozzarelli IM, Kolpin DW, Stevenson BS (2016) Municipal solid waste landfills harbour distinct microbiomes. Front Microbiol 7:1–11

    Google Scholar 

  104. Tan ST, Ho WS, Hashim H, Lee CT, Taib MR, Ho CS (2015) Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers Manag 102:111–120

    Google Scholar 

  105. Tao Y, Zhou Y, He X, Hu X, Li D (2014) Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int J Syst Evol Microbiol 64:95–100

    CAS  PubMed  Google Scholar 

  106. Tong H, Yin K, Giannis A, Ge L, Wang JY (2015) Influence of temperature on carbon and nitrogen dynamics during in situ aeration of aged waste in simulated landfill bioreactors. Biores Technol 192:149–156

    CAS  Google Scholar 

  107. Tozlu A, Özahi E, Abuşoğlu A (2016) Waste to energy technologies for municipal solid waste management in Gaziantep. Renew Sustain Energy Rev 54:809–815

    Google Scholar 

  108. Uz I, Rasche ME, Townsend ET, Lindner AS (2003) Characterization of methanogenic and methanotrophic assemblages in landfill samples. Biol Lett 270:S202–S205

    Google Scholar 

  109. van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049–2053

    PubMed  PubMed Central  Google Scholar 

  110. van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Google Scholar 

  111. van Wyk PHJ (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177

    PubMed  Google Scholar 

  112. Vargas-Garcia MC, Suárez-Estrella FM, López J, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag 30:771–778

    CAS  PubMed  Google Scholar 

  113. Vergara SE, Tchobanoglous G (2012) Municipal solid waste and the environment: a global perspective. Annu Rev Environ Resour 37:277–303

    Google Scholar 

  114. Vetrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 9:e89108

    PubMed  PubMed Central  Google Scholar 

  115. Wang X, Cui H, Shi J, Zhao X, Zhao Y, Wei Z (2015a) Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Biores Technol 198:395–402

    CAS  Google Scholar 

  116. Wang Y, Tang W, Qiao J, Song L (2015b) Occurrence and prevalence of antibiotic resistance in landfill leachate. Environ Sci Pollut Res 22:12525–12533

    CAS  Google Scholar 

  117. Wang X, Cao A, Zhao G, Zhou C, Xu R (2017) Microbial community structure and diversity in a municipal solid waste landfill. Waste Manag 66:79–87

    PubMed  Google Scholar 

  118. Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65

    Google Scholar 

  119. William EE, William SO, Wang YS, Barlaz M (1997) Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ Sci Technol 31:911–917

    Google Scholar 

  120. Wu D, Huang Z, Yang K, Graham D, Xie B (2015) Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49:4122–4128

    CAS  PubMed  Google Scholar 

  121. Ximenes FA, Cowie AL, Barlaz MA (2018) The decay of engineered wood products and paper excavated from landfills in Australia. Waste Manag 74:312–322

    CAS  PubMed  Google Scholar 

  122. Xu SY, Karthikeyan OP, Selvam A, Wong JWC (2014) Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: effect of different leachate recirculation practices. Biores Technol 168:41–48

    CAS  Google Scholar 

  123. Xu S, Lu W, Liu Y, Ming Z, Liu Y, Meng R, Wang H (2017) Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq). Waste Manag 63:41–48

    CAS  PubMed  Google Scholar 

  124. Yan Y, Fotidis IA, Tian H, Khoshnevisan B, Treu L, Tsapekos P, Angelidaki I (2019) Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: focusing on microbial community dynamics. Biores Technol 286:121–376

    Google Scholar 

  125. Yang R, Xu Z, Chai J (2018a) A review of characteristics of landfilled municipal solid waste in several countries: physical composition, unit weight, and permeability coefficient. Pol J Environ Stud 27:2425–2435

    Google Scholar 

  126. Yang L, Lou J, Wang H, Wu L, Xu J (2018b) Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. Sci Total Environ 633:360–371

    CAS  PubMed  Google Scholar 

  127. Yesiller N, Hanson JL, Liu Y-L (2005) Heat generation in municipal solid waste landfills. J Geotech Geoenviron Eng 131:1330–1340

    Google Scholar 

  128. Yin J, Yu X, Wang K, Shen D (2016) Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int J Hydrogen Energy 41:21713–21720

    CAS  Google Scholar 

  129. Zainun MY, Simarani K (2018) Metagenomics profiling for assessing microbial diversity in both active and closed landfills. Sci Total Environ 616–617:269–278

    PubMed  Google Scholar 

  130. Zamanzadeh M, Hagen LH, Svensson K, Linjordet K (2016) Anaerobic digestion of food waste e Effect of recirculation and temperature on performance and microbiology. Water Res 96:246–254

    CAS  PubMed  Google Scholar 

  131. Zhang X-H, Xu Y-B, He X-L, Huang L, Ling J-Y, Zheng L, Du Q-P (2016) Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ Pollut 218:1255–1261

    CAS  PubMed  Google Scholar 

  132. Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Biores Technol 248:68–78

    CAS  Google Scholar 

  133. Zhu X, Campanaro S, Treu L, Kougias PG, Angelidaki I (2019) Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Res 151:271–279

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support in a form of a Postdoctoral Fellowship from the College of Agriculture and Environmental Sciences research fund offered by the University of South Africa (UNISA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lerato Sekhohola-Dlamini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekhohola-Dlamini, L., Tekere, M. Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing. Biodegradation 31, 1–21 (2020). https://doi.org/10.1007/s10532-019-09890-x

Download citation

Keywords

  • Municipal solid waste landfills
  • Functional diversity
  • Waste degradation
  • Bioprocesses
  • Microbial ecology