Skip to main content
Log in

Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Rhamnolipids are one of the most well-known classes of biosurfactants having wide applications in various industries due to low toxicity, high biodegradability, and environmentally friendly. Dissolved oxygen (DO) concentration has the crucial effect on rhamnolipids production, particularly through fed-batch cultivation. In this study, the effect of different levels of DO concentrations on rhamnolipid production by Pseudomonas aeruginosa in both batch and fed-batch fermentation was investigated in a lab-scale fermenter under precise DO control. A maximal rhamnolipid production of 22.5 g/l was obtained at a DO concentration of 40% in batch fermentation. In order to achieve the high rhamnolipid production, a fed-batch operation under tight DO control of 40% was conducted. As a result, the overall rhamnolipid production and productivity reached to 240 g/l and 0.9 (g/l h), corresponding to a 10.7 and 4.8-fold improvement compared to the batch experiments. The high level of rhamnolipid production via the fed-batch cultivation can be attributed to both DO concentration and the feeding strategy. This achievement is promising for the production of rhamnolipid in industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi H, Hamedi MM, Lotfabad TB et al (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. JBIOSC 113:211–219

    CAS  Google Scholar 

  • Anjum F, Gautam G, Edgard G, Negi S (2016) Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresour Technol 213:262–269

    Article  CAS  PubMed  Google Scholar 

  • Anvari S, Hajfarajollah H, Mokhtarani B, Noghabi KA (2015) Physiochemical and thermodynamic characterization of lipopeptide biosurfactant secreted by Bacillus tequilensis HK01. RSC Adv 5:91836–91845

    Article  CAS  Google Scholar 

  • Bagheri Lotfabad T, Ebadipour N, Roostaazad R et al (2017) Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: applying residues from soybean oil industry and silica sol–gel immobilized cells. Colloids Surf B Biointerfaces 152:159–168

    Article  CAS  PubMed  Google Scholar 

  • Behrens B, Engelen J, Tiso T et al (2016) Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Anal Bioanal Chem 408:2505–2514

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Wei YH, Chang JS (2007) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74

    Article  CAS  PubMed  Google Scholar 

  • Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:1–12

    Article  CAS  Google Scholar 

  • Fadhile Almansoory A, Abu Hasan H, Idris M et al (2017) Biosurfactant production by the hydrocarbon-degrading bacteria (HDB) Serratia marcescens: optimization using central composite design (CCD). J Ind Eng Chem 47:272–280

    Article  CAS  Google Scholar 

  • Gámez OR, Rodríguez AA, Cadre JV, Gómez JGC (2017) Screening and characterization of biosurfactant-producing bacteria isolated from contaminated soils with oily wastes. J Environ Treat Tech 5:5–11

    Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  PubMed  Google Scholar 

  • Hajfarajollah H, Mokhtarani B, Noghabi KA (2014) Newly antibacterial and antiadhesive lipopeptide biosurfactant secreted by a probiotic strain, propionibacterium freudenreichii. Appl Biochem Biotechnol 174:2725–2740

    Article  CAS  PubMed  Google Scholar 

  • He N, Wu T, Jiang J et al (2017) Toward high-efficiency production of biosurfactant rhamnolipids using sequential fed-batch fermentation based on a fill-and-draw strategy. Colloids Surf B Biointerfaces 157:317–324

    Article  CAS  PubMed  Google Scholar 

  • Ma KY, Sun MY, Dong W et al (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144–151

    Article  Google Scholar 

  • Manivasagan P, Sivasankar P, Venkatesan J et al (2014) Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst Eng 37:783–797

    Article  CAS  PubMed  Google Scholar 

  • Mondal MH, Malik S, Roy A et al (2015) Modernization of surfactant chemistry in the age of Gemini and biosurfactants: a review. RSC Adv 5:92707–92718

    Article  CAS  Google Scholar 

  • Mondal MH, Sarkar A, Maiti TK, Saha B (2017) Microbial assisted (Pseudomonas sp.) production of novel biosurfactant rhamnolipids and its characterisation by different spectral studies. J Mol Liq 242:873–878

    Article  CAS  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure & function relationship of lipopeptide biosurfactants. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1488:211–218

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pacheco GJ, Reis RS, Fernandes ACLB et al (2012) Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1. Appl Microbiol Biotechnol 95:1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresour Technol 102:6377–6384

    Article  CAS  PubMed  Google Scholar 

  • Sabra W, Kim EJ, Zeng AP (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202

    Article  CAS  PubMed  Google Scholar 

  • Sathi Reddy K, Yahya Khan M, Archana K et al (2016) Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Bioresour Technol 221:291–299

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  CAS  PubMed  Google Scholar 

  • Sodagari M, Invally K, Ju LK (2018) Maximize rhamnolipid production with low foaming and high yield. Enzyme Microb Technol 110:79–86

    Article  CAS  PubMed  Google Scholar 

  • Vanavil B (2014) Studies on the effects of bioprocess parameters and kinetics of rhamnolipid production by P. aeruginosa NITT 6L. Chem Biochem Eng Q J 28:383–390

    Article  CAS  Google Scholar 

  • Vecino X, Barbosa-Pereira L, Devesa-Rey R et al (2015) Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess Biosyst Eng 38:1629–1637

    Article  CAS  PubMed  Google Scholar 

  • Vecino X, Rodríguez-López L, Gudiña EJ et al (2017) Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. J Ind Eng Chem 55:40–49

    Article  CAS  Google Scholar 

  • Vera ECS, de Azevedo PODS, Domínguez JM, Oliveira RP (2018) Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem Eng J 133:168–178

    Article  CAS  Google Scholar 

  • Wu J, Zhang J, Wang P et al (2017) Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption. Bioprocess Biosyst Eng 40:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Qiang J, Jia Y et al (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem 44:302–308

    Article  CAS  Google Scholar 

  • Zhao J, Wu Y, Alfred AT et al (2013) Chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa M14808. J Chem Pharm Res 5:177–182

    Google Scholar 

  • Zhu L, Yang X, Xue C et al (2012) Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresour Technol 117:208–213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Mokhtarani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazsefidpar, S., Mokhtarani, B., Panahi, R. et al. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Biodegradation 30, 59–69 (2019). https://doi.org/10.1007/s10532-018-09866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-018-09866-3

Keywords

Navigation