, Volume 25, Issue 5, pp 681–691 | Cite as

Assessment of microbial communities associated with fermentative–methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20)

  • Débora Toledo Ramos
  • Márcio Luís Busi da Silva
  • Carlos Wolfgang Nossa
  • Pedro J. J. Alvarez
  • Henry Xavier Corseuil
Original Paper


A controlled field experiment was conducted to assess the potential for fermentative–methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative–methanogenic bioremediation of biodiesel blend releases.


Biodegradation Biodiesel BTEX PAH Pyrosequencing Syntrophy 



The authors thank PETROBRAS (Petróleo Brasileiro S/A) for the research financial support as well as CAPES (Coordination for the Improvement of Higher Level Education Personnel) and CNPq (National Council for Scientific and Technological Development) for providing scholarships.


  1. Allen TD, Kraus PF, Lawson PA, Drake GR, Balkwill DL, Tanner RS (2008) Desulfovibrio carbinoliphilus sp., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 58(6):1313–1317PubMedCrossRefGoogle Scholar
  2. Belova SE, Pankratov TA, Dedysh SN (2006) Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology 75(1):90–96CrossRefGoogle Scholar
  3. Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM (2012) Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 81(1):124–133PubMedCrossRefGoogle Scholar
  4. Blackbourne R, Vadivelu VM, Yuan Z, Keller J (2007) Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res 41(14):3033–3042CrossRefGoogle Scholar
  5. Bodour AA, Wang JM, Brusseau ML, Maier RM (2003) Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol 5(10):888–895PubMedCrossRefGoogle Scholar
  6. Bräuer SL, Cadillo-Quiroz H, Ward RJ, Yavitt JB, Zinder SH (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61(1):45–52PubMedCrossRefGoogle Scholar
  7. Bruce T, Martinez IB, Neto OM, Vicente ACP, Kruger RH, Thompson FL (2010) Bacterial community diversity in the Brazilian Atlantic forest soils. Soil Microbiol 60(4):840–849Google Scholar
  8. Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33(5):1162–1169PubMedCentralPubMedGoogle Scholar
  9. Chauhan A, Ogram A (2006) Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 72(4):2400–2406PubMedCentralPubMedCrossRefGoogle Scholar
  10. Coates JD, Lonergan DJ, Philips EJP, Jenter A, Lovley DR (1995) Desulfuromonas palmitatis sp., nov. A marine dissimilatory Fe(III) reducer that can oxidize long chain fatty acids. Arch Microbiol 164(6):406–413PubMedCrossRefGoogle Scholar
  11. Coates JD, Ellis DJ, Gaw CV, Lovley DL (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Evol Microbiol 49(4):1615–1622Google Scholar
  12. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145CrossRefGoogle Scholar
  13. Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64(6):2232–2236PubMedCentralPubMedGoogle Scholar
  14. Corseuil HX, Monier AL, Gomes APN, Chiaranda HS, Rosario M, Alvarez PJJ (2011) Biodegradation of soybean and castor oil biodiesel: implications on the natural attenuation of monoaromatic hydrocarbons in groundwater. Groundw Monit Remediat 31(3):111–118CrossRefGoogle Scholar
  15. Cramm R (2009) Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 16(1–2):38–52PubMedCrossRefGoogle Scholar
  16. Ding L, Yokota A (2010) Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water. J Gen Appl Microbiol 56(3):267–271PubMedCrossRefGoogle Scholar
  17. Dolfing J, Tiedje JM (1991) Acetate as a source of reducing equivalents in the reductive dechlorination of 2,5-dichlorobenzoate. Arch Microbiol 156(5):356–361CrossRefGoogle Scholar
  18. Dolfing J, Xu A, Gray ND, Larter SR, Head IM (2009) The thermodynamic landscape of methanogenic PAH degradation. Microb Biotechnol 2(5):566–574PubMedCentralPubMedCrossRefGoogle Scholar
  19. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, MacDonalds P, Fitzhugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, Dearellano K, Johnson R, Linton L, Mcewan P, Mckernan K, Talamas J, Tirrell A, Ye WJ, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li WX, Liu JF, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, De Macario EC, Ferry JG, Jarrell KF, Jing H, Macario AJL, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12(4):532–542PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gantner S, Andersson AF, Alonso-Sáez L, Bertilsson S (2011) Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods 84(1):12–18PubMedCrossRefGoogle Scholar
  21. Geissler A, Merroun M, Geipel G, Reuther H, Selenska-Pobell S (2009) Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions. Geobiology 7(3):282–294PubMedCrossRefGoogle Scholar
  22. Hatamono M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73(13):4119–4127CrossRefGoogle Scholar
  23. He Q, Sanford RA (2004) Acetate threshold concentrations suggest varying energy requirements during anaerobic respiration by Anaeromyxobacter dehalogenans. Appl Environ Microbiol 70(11):6940–6943PubMedCentralPubMedCrossRefGoogle Scholar
  24. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris. Nat Biotechnol 22(5):554–559PubMedCrossRefGoogle Scholar
  25. Heimann A, Jakobsen R, Blodau C (2009) Energetics constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches. Environ Sci Technol 44(1):24–33CrossRefGoogle Scholar
  26. Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52(5):1729–1735PubMedCrossRefGoogle Scholar
  27. Kloos WE (1980) Natural populations of the genus Staphylococcus. Annu Rev Microbiol 34:559–592PubMedCrossRefGoogle Scholar
  28. Kunapuli U, Jahn MK, Lueders T, Geyer R, Hermann JH, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Gebacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol. 60(3):686–695PubMedCrossRefGoogle Scholar
  29. Lalman JD (2000) Anaerobic degradation of linoleic (C18:2), oleic (C18:1) and stearic (C18:0) acids and their inhibitory effects on acidogens, acetogens and methanogens. Thesis. University of TorontoGoogle Scholar
  30. Leandro T, França L, Nobre MF, Schumann P, Rosselló-Móra R, Costa MS (2012) Nevskia aquatilis sp. nov. and Nevskia persephonica sp. nov., isolated from a mineral water aquifer and the emended description of the genus Nevskia. Syst Appl Microbiol 35(5):297–301PubMedCrossRefGoogle Scholar
  31. Liesack W, Bak F, Kreft JU, Stackebrandt E (1994) Holophaga foetida gen. nov. sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162(1–2):85–90PubMedGoogle Scholar
  32. Lima G, Parker B, Meyer J (2012) Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. Environ Sci Technol 46(11):5756–5763PubMedCrossRefGoogle Scholar
  33. Liu Y, Whitman WB (2008) Metabolic, phylogenetic and ecological diversity of the methanogenic archaea. Ann NY Acad Sci 1125(1):171–189PubMedCrossRefGoogle Scholar
  34. Liu A, Garcia-Dominguez E, Rhine ED, Young LY (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48(3):323–332PubMedCrossRefGoogle Scholar
  35. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159(4):336–344PubMedCrossRefGoogle Scholar
  36. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406PubMedCrossRefGoogle Scholar
  37. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensissp nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermo-catenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51(2):433–446PubMedGoogle Scholar
  38. Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68(5):2294–2299PubMedCentralPubMedCrossRefGoogle Scholar
  39. Nossa CW, Obedorf WE, Yang L, AAS JA, Paster BJ, Desantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16(33):4135–4144PubMedCentralPubMedCrossRefGoogle Scholar
  40. O’Sullivan LA, Mahenthiralingam E (2005) Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol 41(1):8–11PubMedCrossRefGoogle Scholar
  41. Patureau D, Godon JJ, Bouchez T, Bernet N, Delgenes JP, Moletta R (1998) Microvirgula aerodenitrificans gen. nov., sp. nov., a new gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int J Syst Evol Microbiol 48(3):775–782Google Scholar
  42. Philippe G, Vega D, Bastide J (2001) Microbial hydrolysis of methyl aromatic esters by Burkholderia cepacia isolated from soil. FEMS Microbiol Ecol 37(3):251–258CrossRefGoogle Scholar
  43. Rakoczy J, Schleinitz KM, Müller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralization under sulphate-reducing conditions. FEMS Microbiol Ecol 77(2):238–247PubMedCrossRefGoogle Scholar
  44. Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt RM, Spring S, Overmann J, Rosenzweig RF (2006) Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56(12):2729–2736PubMedCrossRefGoogle Scholar
  45. Ramos DT, Da Silva MLB, Chiaranda HS, Alvarez PJJ, Corseuil HX (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24(3):333–341PubMedCrossRefGoogle Scholar
  46. Robertson WJ, Bowman JP, Franzmann PD, Mee BJ (2001) Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasoline-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140PubMedGoogle Scholar
  47. Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68(2):893–900PubMedCentralPubMedCrossRefGoogle Scholar
  48. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–280PubMedCentralPubMedGoogle Scholar
  49. Shim H, Hwang B, Lee S, Kong S (2005) Kinetics of BTEX biodegradation by a coculture of Pseudomonas putida and Pseudomonas fluorescens under hypoxic conditions. Biodegradation 16(4):319–327PubMedCrossRefGoogle Scholar
  50. Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiology 74(5):501–504CrossRefGoogle Scholar
  51. Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15(4):150–155PubMedCrossRefGoogle Scholar
  52. Sousa DZM, Pereira AM, Stams AJM, Alves MM, Smidt H (2007) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol 73(4):1054–1064PubMedCentralPubMedCrossRefGoogle Scholar
  53. Sousa DZM, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol 68(3):257–272PubMedCrossRefGoogle Scholar
  54. Spalding BP, Watson DB (2006) Measurement of dissolved H2, O2 and CO2 in groundwater using passive samplers for gas chromatographic analyses. Environ Sci Technol 40(24):7861–7867PubMedCrossRefGoogle Scholar
  55. Spalding BP, Watson DB (2008) Passive sampling and analyses of common dissolved fixed gases in groundwater. Environ Sci Technol 42(10):3766–3772PubMedCrossRefGoogle Scholar
  56. Tanaka K, Stackebrandt E, Tohyama S, Eguchi T (2000) Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, gram-negative, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50(2):639–644PubMedCrossRefGoogle Scholar
  57. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180PubMedCentralPubMedGoogle Scholar
  58. Treude N, Rosencrantz D, Liesack W, Schnell S (2003) Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 44(2):261–269PubMedCrossRefGoogle Scholar
  59. van der Zaan BM, Saia FT, Stams AJM, Plugge CM, de Vos WM, Smidt H, Langenhoff AAM, Gerritse J (2012) Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ Microbiol 14(5):1171–1181PubMedCrossRefGoogle Scholar
  60. Villemur R, Lanthier M, Beaudet R, Lépine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30(5):706–733PubMedCrossRefGoogle Scholar
  61. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann NY Acad Sci 1125(1):1–43PubMedCrossRefGoogle Scholar
  62. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty TM, Deboy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Dwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7):2046–2056PubMedCentralPubMedCrossRefGoogle Scholar
  63. Worm P, Müller N, Plugge CM, Stams AJM, Schink B (2011) Syntrophy in methanogenic degradation. Microbiol Monogr 19:143–173CrossRefGoogle Scholar
  64. Zhang X, Peterson C, Reece D, Moller G, Haws R (1998) Biodegradability of biodiesel in the aquatic environment. Trans Am Soc Agric Eng 41:1423–1430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Débora Toledo Ramos
    • 1
  • Márcio Luís Busi da Silva
    • 2
  • Carlos Wolfgang Nossa
    • 3
  • Pedro J. J. Alvarez
    • 4
  • Henry Xavier Corseuil
    • 1
  1. 1.Department of Sanitary and Environmental EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.EMBRAPAConcórdiaBrazil
  3. 3.Department of Ecology and Evolutionary BiologyRice UniversityHoustonUSA
  4. 4.Department of Civil and Environmental EngineeringRice UniversityHoustonUSA

Personalised recommendations