Advertisement

Biodegradation

, Volume 25, Issue 2, pp 239–251 | Cite as

A model to describe the performance of the UASB reactor

  • Raúl Rodríguez-Gómez
  • Gunno Renman
  • Luis Moreno
  • Longcheng Liu
Original Article

Abstract

A dynamic model to describe the performance of the Upflow Anaerobic Sludge Blanket (UASB) reactor was developed. It includes dispersion, advection, and reaction terms, as well as the resistances through which the substrate passes before its biotransformation. The UASB reactor is viewed as several continuous stirred tank reactors connected in series. The good agreement between experimental and simulated results shows that the model is able to predict the performance of the UASB reactor (i.e. substrate concentration, biomass concentration, granule size, and height of the sludge bed).

Keywords

CSTR Kinetic Model UASB Wastewater 

List of symbols

CSTR

Continuous stirred tank resctor

DA

Diffusion coefficient of substrate within the granule (m2 h−1)

E

Inactive biomass concenration (kg m−3)

KB

Saturation constant (kg COD m−3 h−1)

Kd

Decay rate (h−1)

Ki

Inhibition constant(kg m−3)

km

Mass transfer coefficient (m h−1)

Ks

Half saturation concentration (kg m−3)

ks

Grau second order substrate removal rate constant (h−1)

N

Number of CSTR

Np

Number of granules per volume of reactor (granule m−3)

OLR

Organic loading reate (kg COD m−3 h−1)

Pe

Péclet number

Q

Flow rate (m3 h−1)

q

Flux (kg m−2 h−1)

R

Granule radius (m)

R0

Initial radius of the granule (m)

Rs

Kinetic term (kg m−3 h−1)

R

Radial distance from the center of the granule (m)

S

Substrate concentration (kg m−3)

S0

Inlet substrate concentration (kg m−3)

Se

Effluent substrate concentration (kg m−3)

SP

Substrate concentration within the granule (kg m−3)

Spgrad

Gradient of the substrate (kg m−2 h−1)

t

Time (h)

Umax

Maximum utilization rate constant (kg COD m−3 h−1)

V

Volume of CSTR (m3)

X

Biomass concentration (kg m−3)

Y

Yield [kg VSS generated (kg COD degraded)−1)]

Β

Kinetic parameter [kg COD (kg VSS)−1)]

φP

Volume fraction occupied by the granules

ρbiomass

Density of the biomass (kg m−3)

μmax

Maximum specific growth rate (h−1)

References

  1. Abbasi S, Abbasi T (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sustain Energy Rev 16:1696–1708CrossRefGoogle Scholar
  2. Abdesselema K, Azedineb H, Lyndac C, Younesa S (2012) Wastewater discharge impact on groundwater quality of Béchar city, southwestern Algeria: an anthropogenic activities mapping approach. Procedia Eng 33:242–247CrossRefGoogle Scholar
  3. Abu-Reesh Abu-Sharkh (2003) Comparison of axial dispersion and tanks-in-series models for simulating the performance of enzyme reactors. Ind Eng Chem Res 42:5495–5505CrossRefGoogle Scholar
  4. Ahmad A, Latif M, Ghufran R, Wahid Z (2011) Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res 45:4683–4699PubMedCrossRefGoogle Scholar
  5. Ahring B, Schmidt J (1996) Review granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246PubMedGoogle Scholar
  6. Aiyuka S, Amoakoa J, Raskin L (2004) Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. Water Res 38:3031–3042CrossRefGoogle Scholar
  7. Alphenaar P, Perez C, van Berkel W, Lettinga G (1992) Determination of the permeability and porosity of anaerobic sludge granules by size exclusion chromatography. Appl Microbiol Biotechnol 36:795–799Google Scholar
  8. Angelidaki I, Fang C, Boe K (2011) Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour Technol 102:5734–5741PubMedCrossRefGoogle Scholar
  9. Batstone D, Keller J, Angelidaki I, Kalyhuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) Anaerobic digestion model No.1 (ADM1), by IWA task group for mathematical modeling of anaerobic wastewater process. Scientific and technical report No. 13. International water asociation (IWA) Publishing, LondonGoogle Scholar
  10. Bhattacharyya D, Harmita H, Singh K, Wilson B (2009) Fluidization in an anaerobic EGSB reactor: analysis of primary wakes and modeling of sludge blanket. J Environ Eng 135:700–707CrossRefGoogle Scholar
  11. Bitton G (2005) Wastewater microbiology. Wiley-Liss, HobokenCrossRefGoogle Scholar
  12. Borja R, Banks C, Wang Z (1994) Performance and kinetics of an upflow anaerobic sludge blanket (UASB) reactor treating slaughterhouse wastewater—part A: toxic hazardous substances and environmental engineering. J Enviro Sci Health 29:2063–2085Google Scholar
  13. Chou H, Huang J (2005) Role of mass transfer resistance in overall substrate removal rate in upflow anaerobic sludge bed reactors. J Enviro Eng 131:548–556CrossRefGoogle Scholar
  14. Contois D (1959) Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol 21:40–50PubMedCrossRefGoogle Scholar
  15. Flaherty V, McHugh S, Reilly C, Mahony E, Colleran E (2003) Anaerobic granular sludge technology. Environ Sci Bio/Technol 2:225–245CrossRefGoogle Scholar
  16. Flotats X, Vavilin V, Fernandez B, Palatsi J (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951PubMedCrossRefGoogle Scholar
  17. Fogler HS (2006) Chemical reactor engineering. Amundson, HustonGoogle Scholar
  18. Foresti E, Zaiat M, Vallero M (2006) Anaerobic processes as the core technology for sustainable domestic wastewater treatment: consolidated applications, new trends, perspectives, and challenges. Rev Environ Sci Bio/Technol 5:3–19CrossRefGoogle Scholar
  19. Ghangrekar M, Bhunia P (2008) Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors. Bioresour Technol 99:2132–2140PubMedCrossRefGoogle Scholar
  20. Gonzalez-Gil G, Seghezzo L, Lettinga G, Kleerebezem R (2001) Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnol Bioeng 73:125–134PubMedCrossRefGoogle Scholar
  21. Graaff M, Temmink H, Zeeman G, Buisman C (2010) Anaerobic treatment of concentrated black water in a UASB reactor at a short HRT. J Water 2:101–119CrossRefGoogle Scholar
  22. Grau P, Dohányos M, Chudoba J (1975) Kinetics of multicomponent substrate removal by activated sludge. Water Res 9:637–642CrossRefGoogle Scholar
  23. Hanson M, Carlson J, Anderson J, Low J, Cardinal P, MacKenzie S, Beattie S, Challis J, Bennett R, Meronek S, Wilks R, Buhay W, Wong C (2013) Presence and hazards of nutrients and emerging organic micropollutants from sewage lagoon discharges into Dead Horse creek, Manitoba, Canada. Sci Total Environ 445–446:64–78PubMedGoogle Scholar
  24. Huang J, Jih C, Lin S, Ting W (2003) Process kinetics of UASB reactors treating non-inhibitory substrate. J Chem Technol Biotechnol 78:762–772CrossRefGoogle Scholar
  25. Huang J, Chou H, Hong W (2004a) Temperature dependency of granule characteristics and kinetic behavior in UASB reactors. J Chem Technol Biotechnol 79:797–808CrossRefGoogle Scholar
  26. Huang G, Hsu S, Liang T, Huang Y (2004b) Study on hydrogen production with hysteresis in UASB. Chemosphere 54:815–821PubMedCrossRefGoogle Scholar
  27. Hulshoff L, Lens P, Castro S, Lettinga G (2004) Anaerobic sludge granulation. Water Res 38:1376–1389CrossRefGoogle Scholar
  28. Hutñan M, Mrafková L, Drtil M, Derco J (1999) Methanogenic and nonmethanogenic activity of granulated sludge in anaerobic baffled reactor. Chem Papers 53:374–378Google Scholar
  29. Kalyuzhnyi S, Fedorovich V, Lens P (2001) Novel dispersed plug flow model for UASB reactors focusing on sludge dynamics in anaerobic digestion. Proc Antwerpen, Belgium 123–128Google Scholar
  30. Kalyuzhnyi S, Fedorovich V, Lens P (2006) Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics. J Ind Microbiol Biotechnol 33:221–237PubMedCrossRefGoogle Scholar
  31. Khanh D, Quan L, Zhang W, Hira D, Furukawa K (2011) Effect of temperature on low-strength wastewater treatment by UASB reactor using poly(vinyl alcohol)-gel carrier. Bioresour Technol 102:11147–11154PubMedCrossRefGoogle Scholar
  32. Korsak L (2008) Anaerobic treatment of wastewater in a UASB reactor. Dissertation, Royal Institute of TechnologyGoogle Scholar
  33. Kryłów M (2003) Kinetics of subsequent phases of the anaerobic processes. Proc of a Polish-Swedish seminar. In: Plaza E, Levlin E, Hultman B (ed) Integration and optimisation of urban sanitation systems. Wisla pp 29–37Google Scholar
  34. Lens P, Gastesi R, Vergeldt F, van Aelst A, Pisabarro A, Van As H (2003) Diffusional properties of methanogenic granular sludge: 1H NMR characterization. Appl Environ Microbiol 69:6644–6649PubMedCentralPubMedCrossRefGoogle Scholar
  35. Lew B, Tarre S, Belavski M, Green M (2004) UASB reactor for domestic wastewater treatment at low temperatures: a comparison between a classical UASB and hybrid UASB-filter reactor. Water Sci Technol 49:295–301PubMedGoogle Scholar
  36. Lin L, Hongbing L, Gu H, Ping L, Jingxian L, Sheng H, Fuxiang W, Rui X, Xiaoxue H (2009) Total pollution effect of urban surface runoff. J Environ Sci 21:1186–1193CrossRefGoogle Scholar
  37. Liu Y, Tay J (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665PubMedCrossRefGoogle Scholar
  38. Liu Y, Hai-Lou X, Shu-Fang Y, Joo-Hwa T (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:61–673Google Scholar
  39. Lorby J, Flandrios J, Carret G, Pave A (1992) Monod’s bacterial growth model revisited. Bull Math Biol 54:117–122CrossRefGoogle Scholar
  40. Luo H, Al-Dahhan M (2011) Verification and validation of CFD simulations for local flow dynamics in a draft tube air lift bioreactor. Chem Eng Sci 66:907–923CrossRefGoogle Scholar
  41. MacLeod F, Guiot S, Costerton J (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56:1598–1607PubMedCentralPubMedGoogle Scholar
  42. Mahmoud N, Zeeman G, Gijzen H, Lettinga G (2003) Anaerobic sewage treatment in a one-stage UASB and a combined UASB-digester system. In proc of the seventh international water technology conference, Egypt 28–30Google Scholar
  43. Massé D, Masse L (2000) Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors. Can Agric Eng 42:131–137Google Scholar
  44. McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Bio/Technol 2:225–245CrossRefGoogle Scholar
  45. Nacheva M, Reyes M, Serrano L (2011) Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water Sci Technol 63:877–884PubMedCrossRefGoogle Scholar
  46. Narnoli S, Mehrotra I (1997) Sludge blanket of UASB reactor: mathematical simulation. Water Res 31:715–726CrossRefGoogle Scholar
  47. Ng H, Wong S, Wong S, Krishnan K, Tiew S, Kwok W, Ooi K, Wah Y, Ong S (2006) Integrated anaerobic and aerobic processes for treatment of municipal wastewater. Water Environ Found 3205–3216Google Scholar
  48. Palns S, Loewenthal R, Dold P, Marais G (1987) Hypothesis for pelletisation in upflow anaerobic sludge blanket reactor. Water SA 13:69–80Google Scholar
  49. Pereboom J (1994) Size distribution model for methanogenic granules from full scale UASB and IC reactors. Water Sci Technol 30:211–221Google Scholar
  50. Pereboom J, Vereijken T (1994) Methanogenic granule development in full scale internal recirculation reactors. Water Sci Technol 30:9–21Google Scholar
  51. Richardson J, Peacock D (1994) Chemical engineering: chemical & biochemical reactors & process control. Pergamon, Great BritainGoogle Scholar
  52. Rodríguez-Gómez R (2011) Upflow anaerobic sludge blanket reactor: modelling. Dissertation, Royal Institute of TechnologyGoogle Scholar
  53. Rodríguez-Gómez R, Moreno L, Liu L (2013) A model to predict the behavior of UASB reactors. Int J Environ Res 7:605–614Google Scholar
  54. Saravanathamizhan R, Balasubramanian N, Srinivasakannan C (2010) Comparison of thanks-in-series and axial dispersion models for an electrochemical reactor. J Model Simul Syst 1:171–175Google Scholar
  55. Seghezzo L (2004) Anaerobic treatment of domestic wastewater in subtropical regions. Dissertation, Wageningen UniversityGoogle Scholar
  56. Seghezzo L, Gutierrez M, Trupiano A, Figueroa M, Cuevas C, Zeeman G, Lettinga G (2002) The effect of sludge discharge and upflow velocity on the removal of suspended solids in a UASB reactor treating settled sewage as moderate temperatures: In the VII Latin-American workshop and seminar on anaerobic digestion Proc Mexico 367–372Google Scholar
  57. Sponza D, Isik M (2005) Substrate removal kinetics in an upflow anaerobic sudge blanket reactor decolorizing simulated textile wastewater. Process Biochem 40:1189–1198CrossRefGoogle Scholar
  58. Sponza D, Uluköy A (2008) Kinetic of carbonaceous substrate in an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP). J Environ Manag 86:121–131CrossRefGoogle Scholar
  59. Tay J, Xu H, Teo K (2000) Molecular mechanism of granulation I: H + translocation − dehydration theory. J Environ Eng 126:403–410CrossRefGoogle Scholar
  60. Tiwari M, Guha S, Harendranath C, Tripathi S (2006) Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol 71:145–154PubMedCrossRefGoogle Scholar
  61. Vammen K, Hurtado I, Picado F, Flores Y, Calderón H, Delgado V, Flores S, Caballero Y, Jiménez M, Sáenz R (2012) Recursos hídricos en Nicaragua: una visión estratégica. Diagnóstico del agua en las américas. FCCyT, MexicoGoogle Scholar
  62. Wang J, Li J, Luan Z, Deng Y, Chen L (2011) Evaluation of performance and microbial community in a two-stage UASB reactor pretreating acrylic fiber manufacturing wastewater. Bioresour Technol 102:5709–5716PubMedCrossRefGoogle Scholar
  63. Wu M, Hickey R (1997) Dynamic model for UASB reactor including reactor hydraulic, reaction, and diffusion. J Environ Eng 123:244–252CrossRefGoogle Scholar
  64. Yetilmezsoy K (2012) Integration of kinetic modeling and desirability function approach for multi-objective optimization of UASB reactor treating poultry manure wastewater. Bioresour Technol 118:89–101PubMedCrossRefGoogle Scholar
  65. Zhou W, Imai T, Ukita M, Sekine M, Higuchi T (2006) Triggering forces for anaerobic granulation in UASB reactors. Process Biochem 41:36–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Raúl Rodríguez-Gómez
    • 1
    • 2
  • Gunno Renman
    • 2
  • Luis Moreno
    • 1
  • Longcheng Liu
    • 1
  1. 1.Department of Chemical Engineering and TechnologyRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Land and Water Resources EngineeringRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations