, Volume 24, Issue 6, pp 795–811 | Cite as

Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates

Original Paper


Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon degrader, can utilize nine of the ten N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (~196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency.


Proteomics Metabolomics Biodegradation Bioremediation Pesticide Catabolism 



This work was supported in part with US-EPA award no. 989512-01-1, US ONR HEET award N00014-09-1-0709, and grants from the National Institute on Minority Health and Health Disparities (8 G12 MD007601-26).

Supplementary material

10532_2013_9629_MOESM1_ESM.jpg (795 kb)
Supplementary material 1 (JPG 795 kb)
10532_2013_9629_MOESM2_ESM.jpg (797 kb)
Supplementary material 2 (JPG 797 kb)
10532_2013_9629_MOESM3_ESM.jpg (796 kb)
Supplementary material 3 (JPG 797 kb)
10532_2013_9629_MOESM4_ESM.doc (378 kb)
Supplementary material 4 (DOC 378 kb)
10532_2013_9629_MOESM5_ESM.doc (31 kb)
Supplementary material 5 (DOC 31 kb)
10532_2013_9629_MOESM6_ESM.doc (33 kb)
Supplementary material 6 (DOC 33 kb)
10532_2013_9629_MOESM7_ESM.xls (306 kb)
Supplementary material 7 (XLS 306 kb)
10532_2013_9629_MOESM8_ESM.doc (36 kb)
Supplementary material 8 (DOC 36 kb)
10532_2013_9629_MOESM9_ESM.xls (182 kb)
Supplementary material 9 (XLS 181 kb)


  1. Allen CCR, Boyd C, Larkin MJ, Reid KA, Sharma ND, Wilson K (1997) Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038. Appl Environ Microbiol 63:151–155Google Scholar
  2. Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles J-C (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606PubMedGoogle Scholar
  3. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  4. Balashova NV, Stolz A, Knackmuss HJ, Kosheleva IA, Naumov AV, Boronin AM (2001) Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation 12:179–188PubMedCrossRefGoogle Scholar
  5. Barber RD, Donohue TJ (1998) Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37:530–537PubMedCrossRefGoogle Scholar
  6. Bastiaens L, Springael D, Wattiau P, Harms H, deWachter L, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843PubMedCrossRefGoogle Scholar
  7. Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101CrossRefGoogle Scholar
  8. Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461PubMedCrossRefGoogle Scholar
  9. Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdovag M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287PubMedCrossRefGoogle Scholar
  10. Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Op Microbiol 4:160–165CrossRefGoogle Scholar
  11. Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970PubMedCrossRefGoogle Scholar
  12. Denef VJ, Patrauchan MA, Florizone C, Park J, Tsoi TV, Verstraete W, Tiedje JM, Eltis LD (2005) Growth substrate and phase specific expression of biphenyl, benzoate and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187:7996–8005PubMedCrossRefGoogle Scholar
  13. Denef VJ, Klappenbach JA, Patrauchan MA, Florizone C, Rodrigues JLM, Tsoi TV, Verstraete W, Eltis LD, Tiedje JM (2006) Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl Environ Microbiol 72:585–595PubMedCrossRefGoogle Scholar
  14. Echave P, Esparza-Cerón MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernández J, Lin ECC (2002) DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci USA 99:4626–4631PubMedCrossRefGoogle Scholar
  15. Echave P, Tamarit J, Cabiscol E, Ros J (2003) Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J Biol Chem 278:30193–30198PubMedCrossRefGoogle Scholar
  16. Elias JE, Haas W, Faherty BK, Gygi SP (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2:667–675Google Scholar
  17. Ferguson GP, Booth IR (1998) Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+. J Bacteriol 180:4314–4318PubMedGoogle Scholar
  18. Grundy FJ, Waters DA, Allen SH, Henkin TM (1993) Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175:7348–7355PubMedGoogle Scholar
  19. Hakura A, Morimoto K, Sofuni T, Nohmi T (1991) Cloning and characterization of the Salmonella typhimurium ada gene, which encodes O6-methylguanine-DNA methyltransferase. J Bacteriol 173:3663–3672PubMedGoogle Scholar
  20. Hashimoto M, Fukui M, Hayano K, Hayatsu M (2002) Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 68:1220–1227PubMedCrossRefGoogle Scholar
  21. Huisman GW, Kolter R (1994) Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265:537–539PubMedCrossRefGoogle Scholar
  22. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PE, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita D (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597PubMedCrossRefGoogle Scholar
  23. Keum Y-S, Seo J-S, Li QX (2005) Synthesis of bacterial metabolites of polycyclic aromatic hydrocarbons: benzochromenones, o-cartboxyvinylnaphthoates, o-substituted aryl-β-oxobutenoates. Synth Commun 35:2685–2693CrossRefGoogle Scholar
  24. Keum Y-S, Seo J-S, Hu Y, Li QX (2006) Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol 71:935–941PubMedCrossRefGoogle Scholar
  25. Keum Y-S, Seo J-S, Li QX, Kim JH (2008) Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Appl Microbiol Biotechnol 80:863–872PubMedCrossRefGoogle Scholar
  26. Keum Y-S, Kim J-H, Li QX (2010) Metabolomics in pesticide toxicology. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 627–643CrossRefGoogle Scholar
  27. Kilstrup M, Jacobsen S, Hammer K, Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus latis. Appl Environ Microbiol 63:1826–1837PubMedGoogle Scholar
  28. Kim SJ, Jones RC, Cha C-J, Kweon O, Edmondson RD, Cerniglia CE (2004a) Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 4:3899–3908PubMedCrossRefGoogle Scholar
  29. Kim Y-H, Moody JD, Freeman JP, Brezna B, Engesser K-H, Cerniglia CE (2004b) Evidence for the existence of PAH-quinone reductase and catechol-o-methyltransferase in Mycobacterium vanbaalenii PYR-1. J Ind Microbiol Biotechnol 31:507–516PubMedCrossRefGoogle Scholar
  30. Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841PubMedCrossRefGoogle Scholar
  31. Kweon O, Kim S-J, Jones RC, Freeman JP, Adjei MD, Edmondson RD, Cerniglia CE (2007) A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR-1. J Bacteriol 189:4635–4647PubMedCrossRefGoogle Scholar
  32. Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp culture and its enzymes. Enz Microbial Technol 39:1471–1475CrossRefGoogle Scholar
  33. Larkin MJ, Day MJ (1986) The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil. J Appl Bacteriol 60:233–242PubMedCrossRefGoogle Scholar
  34. Lee S-E, Li QX, Yu J (2006) Proteomic examination of Ralstonia eutropha in cellular responses to formic acid. Proteomics 6:4259–4268PubMedCrossRefGoogle Scholar
  35. Lee S-E, Seo J-S, Keum Y-S, Lee KJ, Li QX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 7:2059–2069PubMedCrossRefGoogle Scholar
  36. Lima WC, Varani AM, Menck CFM (2009) NAD biosynthesis evolution in bacteria: lateral gene transfer of kynurenine pathway in Xanthomonadales and Flavobacteriales. Mol Biol Evol 26:399–406PubMedCrossRefGoogle Scholar
  37. Manian SS, Gumbleton R, O’Gara F (1982) The role of formate metabolism in nitrogen fixation in Rhizobium spp. Arch Microbiol 133:312–317CrossRefGoogle Scholar
  38. Melchiorsen CR, Jokumsen KV, Villadsen J, Johnsen MG, Israelsen H, Arnau J (2000) Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. J Bacteriol 182:4783–4788PubMedCrossRefGoogle Scholar
  39. Parnell JJ, Park JH, Denef V, Tsoi T, Hashsham S, Quensen J III, Tiedje JM (2006) Coping with polychlorinated biphenyl (PCB) toxicity: physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614PubMedCrossRefGoogle Scholar
  40. Potter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560PubMedCrossRefGoogle Scholar
  41. Price-Carter M, Fazzio TG, Vallbona EI, Roth JR (2005) Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J Bacteriol 187:3088–3099PubMedCrossRefGoogle Scholar
  42. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693PubMedCrossRefGoogle Scholar
  43. Qi S, Li QX (2010) Proteomics in pesticide toxicology. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 603–626CrossRefGoogle Scholar
  44. Qing Z, Yang L, Liu YH (2003) Purification and characterization of a novel carbaryl hydrolase from Aspergillus niger PY168. FEMS Microbiol Lett 228:39–44CrossRefGoogle Scholar
  45. Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641PubMedCrossRefGoogle Scholar
  46. Rimmele M, Boos W (1994) Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol 176:5654–5664PubMedGoogle Scholar
  47. Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822PubMedCrossRefGoogle Scholar
  48. Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652PubMedCrossRefGoogle Scholar
  49. Seo J-S, Keum Y-S, Harada RM, Li QX (2007a) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389PubMedCrossRefGoogle Scholar
  50. Seo J-S, Keum Y-S, Hu Y, Lee SE, Li QX (2007b) Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation 18:123–131PubMedCrossRefGoogle Scholar
  51. Seo J-S, Keum Y-S, Li QX (2011) Comparative protein and metabolite profiling revealed a metabolic network in response to multiple environmental contaminants in Mycobacterium aromativorans JS19b1T. J Agri Food Chem 59:2876–2882Google Scholar
  52. Singh BK, Kuhad RC, Singh A, Lal R, Tripathi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225PubMedCrossRefGoogle Scholar
  53. Snider J, Gutsche I, Lin M, Baby S, Cox B, Butland G, Greenblatt J, Emili A, Houry WA (2006) Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA + ATPase. J Biol Chem 281:1532–1546PubMedCrossRefGoogle Scholar
  54. Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027PubMedCrossRefGoogle Scholar
  55. Stojiljkovic I, Baumler AJ, Heffron F (1995) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177:1357–1366PubMedGoogle Scholar
  56. Swetha VP, Phale PS (2005) Metabolism of carbaryl via 1,2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strain C4, C5, and C6. Appl Environ Microbiol 71:5951–5956PubMedCrossRefGoogle Scholar
  57. Tittabutr P, Cho IK, Li QX (2011) Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3. Biodegradation 22:1119–1133PubMedCrossRefGoogle Scholar
  58. Topp E, Hanson RS, Ringelberg DB, White DC, Wheatcroft R (1993) Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl Environ Microbiol 59:3339–3349PubMedGoogle Scholar
  59. Weckwerth W (2003) Metabolomics in system biology. Ann Rev Plant Biol 54:669–689CrossRefGoogle Scholar
  60. Wilson B (2010) Cholinesterases. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 1457–1478CrossRefGoogle Scholar
  61. Yamamoto K, Imae Y (1993) Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc Natl Acad Sci USA 90:217–221PubMedCrossRefGoogle Scholar
  62. Zhou NY, Al-Dulayymi J, Baird MS, Williams PA (2002) Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol 184:1547–1555PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Molecular Biosciences and BioengineeringUniversity of HawaiiHonoluluUSA
  2. 2.Environmental Toxicology Research Center, Korea Institute of ToxicologyDaejeonSouth Korea
  3. 3.Department of Molecular BiotechnologyKonKuk UniversitySeoulSouth Korea

Personalised recommendations