Skip to main content
Log in

Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon degrader, can utilize nine of the ten N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (~196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen CCR, Boyd C, Larkin MJ, Reid KA, Sharma ND, Wilson K (1997) Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038. Appl Environ Microbiol 63:151–155

    CAS  Google Scholar 

  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles J-C (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Balashova NV, Stolz A, Knackmuss HJ, Kosheleva IA, Naumov AV, Boronin AM (2001) Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation 12:179–188

    Article  PubMed  CAS  Google Scholar 

  • Barber RD, Donohue TJ (1998) Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37:530–537

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter L, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  PubMed  CAS  Google Scholar 

  • Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  PubMed  CAS  Google Scholar 

  • Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdovag M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287

    Article  PubMed  Google Scholar 

  • Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Op Microbiol 4:160–165

    Article  CAS  Google Scholar 

  • Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970

    Article  PubMed  CAS  Google Scholar 

  • Denef VJ, Patrauchan MA, Florizone C, Park J, Tsoi TV, Verstraete W, Tiedje JM, Eltis LD (2005) Growth substrate and phase specific expression of biphenyl, benzoate and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187:7996–8005

    Article  PubMed  CAS  Google Scholar 

  • Denef VJ, Klappenbach JA, Patrauchan MA, Florizone C, Rodrigues JLM, Tsoi TV, Verstraete W, Eltis LD, Tiedje JM (2006) Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl Environ Microbiol 72:585–595

    Article  PubMed  CAS  Google Scholar 

  • Echave P, Esparza-Cerón MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernández J, Lin ECC (2002) DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci USA 99:4626–4631

    Article  PubMed  CAS  Google Scholar 

  • Echave P, Tamarit J, Cabiscol E, Ros J (2003) Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J Biol Chem 278:30193–30198

    Article  PubMed  CAS  Google Scholar 

  • Elias JE, Haas W, Faherty BK, Gygi SP (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2:667–675

    Google Scholar 

  • Ferguson GP, Booth IR (1998) Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+. J Bacteriol 180:4314–4318

    PubMed  CAS  Google Scholar 

  • Grundy FJ, Waters DA, Allen SH, Henkin TM (1993) Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175:7348–7355

    PubMed  CAS  Google Scholar 

  • Hakura A, Morimoto K, Sofuni T, Nohmi T (1991) Cloning and characterization of the Salmonella typhimurium ada gene, which encodes O6-methylguanine-DNA methyltransferase. J Bacteriol 173:3663–3672

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Fukui M, Hayano K, Hayatsu M (2002) Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 68:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Huisman GW, Kolter R (1994) Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265:537–539

    Article  PubMed  CAS  Google Scholar 

  • Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PE, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita D (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597

    Article  PubMed  CAS  Google Scholar 

  • Keum Y-S, Seo J-S, Li QX (2005) Synthesis of bacterial metabolites of polycyclic aromatic hydrocarbons: benzochromenones, o-cartboxyvinylnaphthoates, o-substituted aryl-β-oxobutenoates. Synth Commun 35:2685–2693

    Article  CAS  Google Scholar 

  • Keum Y-S, Seo J-S, Hu Y, Li QX (2006) Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol 71:935–941

    Article  PubMed  CAS  Google Scholar 

  • Keum Y-S, Seo J-S, Li QX, Kim JH (2008) Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Appl Microbiol Biotechnol 80:863–872

    Article  PubMed  CAS  Google Scholar 

  • Keum Y-S, Kim J-H, Li QX (2010) Metabolomics in pesticide toxicology. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 627–643

    Chapter  Google Scholar 

  • Kilstrup M, Jacobsen S, Hammer K, Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus latis. Appl Environ Microbiol 63:1826–1837

    PubMed  CAS  Google Scholar 

  • Kim SJ, Jones RC, Cha C-J, Kweon O, Edmondson RD, Cerniglia CE (2004a) Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 4:3899–3908

    Article  PubMed  CAS  Google Scholar 

  • Kim Y-H, Moody JD, Freeman JP, Brezna B, Engesser K-H, Cerniglia CE (2004b) Evidence for the existence of PAH-quinone reductase and catechol-o-methyltransferase in Mycobacterium vanbaalenii PYR-1. J Ind Microbiol Biotechnol 31:507–516

    Article  PubMed  CAS  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841

    Article  PubMed  CAS  Google Scholar 

  • Kweon O, Kim S-J, Jones RC, Freeman JP, Adjei MD, Edmondson RD, Cerniglia CE (2007) A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR-1. J Bacteriol 189:4635–4647

    Article  PubMed  CAS  Google Scholar 

  • Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp culture and its enzymes. Enz Microbial Technol 39:1471–1475

    Article  CAS  Google Scholar 

  • Larkin MJ, Day MJ (1986) The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil. J Appl Bacteriol 60:233–242

    Article  PubMed  CAS  Google Scholar 

  • Lee S-E, Li QX, Yu J (2006) Proteomic examination of Ralstonia eutropha in cellular responses to formic acid. Proteomics 6:4259–4268

    Article  PubMed  CAS  Google Scholar 

  • Lee S-E, Seo J-S, Keum Y-S, Lee KJ, Li QX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 7:2059–2069

    Article  PubMed  CAS  Google Scholar 

  • Lima WC, Varani AM, Menck CFM (2009) NAD biosynthesis evolution in bacteria: lateral gene transfer of kynurenine pathway in Xanthomonadales and Flavobacteriales. Mol Biol Evol 26:399–406

    Article  PubMed  CAS  Google Scholar 

  • Manian SS, Gumbleton R, O’Gara F (1982) The role of formate metabolism in nitrogen fixation in Rhizobium spp. Arch Microbiol 133:312–317

    Article  CAS  Google Scholar 

  • Melchiorsen CR, Jokumsen KV, Villadsen J, Johnsen MG, Israelsen H, Arnau J (2000) Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. J Bacteriol 182:4783–4788

    Article  PubMed  CAS  Google Scholar 

  • Parnell JJ, Park JH, Denef V, Tsoi T, Hashsham S, Quensen J III, Tiedje JM (2006) Coping with polychlorinated biphenyl (PCB) toxicity: physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614

    Article  PubMed  CAS  Google Scholar 

  • Potter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560

    Article  PubMed  Google Scholar 

  • Price-Carter M, Fazzio TG, Vallbona EI, Roth JR (2005) Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J Bacteriol 187:3088–3099

    Article  PubMed  CAS  Google Scholar 

  • Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693

    Article  PubMed  CAS  Google Scholar 

  • Qi S, Li QX (2010) Proteomics in pesticide toxicology. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 603–626

    Chapter  Google Scholar 

  • Qing Z, Yang L, Liu YH (2003) Purification and characterization of a novel carbaryl hydrolase from Aspergillus niger PY168. FEMS Microbiol Lett 228:39–44

    Article  Google Scholar 

  • Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641

    Article  PubMed  CAS  Google Scholar 

  • Rimmele M, Boos W (1994) Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol 176:5654–5664

    PubMed  CAS  Google Scholar 

  • Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822

    Article  PubMed  CAS  Google Scholar 

  • Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

    Article  PubMed  CAS  Google Scholar 

  • Seo J-S, Keum Y-S, Harada RM, Li QX (2007a) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389

    Article  PubMed  CAS  Google Scholar 

  • Seo J-S, Keum Y-S, Hu Y, Lee SE, Li QX (2007b) Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation 18:123–131

    Article  PubMed  CAS  Google Scholar 

  • Seo J-S, Keum Y-S, Li QX (2011) Comparative protein and metabolite profiling revealed a metabolic network in response to multiple environmental contaminants in Mycobacterium aromativorans JS19b1T. J Agri Food Chem 59:2876–2882

    Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Lal R, Tripathi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225

    Article  PubMed  CAS  Google Scholar 

  • Snider J, Gutsche I, Lin M, Baby S, Cox B, Butland G, Greenblatt J, Emili A, Houry WA (2006) Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA + ATPase. J Biol Chem 281:1532–1546

    Article  PubMed  CAS  Google Scholar 

  • Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027

    Article  PubMed  Google Scholar 

  • Stojiljkovic I, Baumler AJ, Heffron F (1995) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177:1357–1366

    PubMed  CAS  Google Scholar 

  • Swetha VP, Phale PS (2005) Metabolism of carbaryl via 1,2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strain C4, C5, and C6. Appl Environ Microbiol 71:5951–5956

    Article  PubMed  CAS  Google Scholar 

  • Tittabutr P, Cho IK, Li QX (2011) Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3. Biodegradation 22:1119–1133

    Article  PubMed  CAS  Google Scholar 

  • Topp E, Hanson RS, Ringelberg DB, White DC, Wheatcroft R (1993) Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl Environ Microbiol 59:3339–3349

    PubMed  CAS  Google Scholar 

  • Weckwerth W (2003) Metabolomics in system biology. Ann Rev Plant Biol 54:669–689

    Article  CAS  Google Scholar 

  • Wilson B (2010) Cholinesterases. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 1457–1478

    Chapter  Google Scholar 

  • Yamamoto K, Imae Y (1993) Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc Natl Acad Sci USA 90:217–221

    Article  PubMed  CAS  Google Scholar 

  • Zhou NY, Al-Dulayymi J, Baird MS, Williams PA (2002) Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol 184:1547–1555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part with US-EPA award no. 989512-01-1, US ONR HEET award N00014-09-1-0709, and grants from the National Institute on Minority Health and Health Disparities (8 G12 MD007601-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing X. Li.

Additional information

Jong-Su Seo and Young-Soo Keum equally contributed to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, JS., Keum, YS. & Li, Q.X. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates. Biodegradation 24, 795–811 (2013). https://doi.org/10.1007/s10532-013-9629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9629-2

Keywords

Navigation