, Volume 24, Issue 4, pp 549–562 | Cite as

Decontamination of a polychlorinated biphenyls-contaminated soil by phytoremediation-assisted bioaugmentation

  • C. Secher
  • M. Lollier
  • K. Jézéquel
  • J. Y. Cornu
  • L. Amalric
  • T. Lebeau
Original Paper


A 70 day pot experiment was conducted for the cleaning-up of a PCBs-contaminated soil (104 mg kg−1 soil DW) using bioaugmentation with Burkholderia xenovorans LB400 (LB400) assisted or not by the use of tall fescue (Festuca arundinacea). The total cultivable bacteria of the soil were higher with the presence of plants. Real-time PCR showed that LB400 (targeting 16S–23S rRNA ITS) survived with abundance related to total bacteria (targeting 16S rRNA) being higher with fescue (up to a factor of three). Bioaugmentation had a positive effect on fescue biomass and more specifically on roots (by a factor of three). PCB dissipation (sum of congeners 28, 52, 101, 118, 153, 180) averaged 13 % (bioaugmented-planted) up to 32 % (non bioaugmented-planted), without any significant difference between treatments. Basically our results demonstrated that indigenous bacteria were able to dissipate PCBs (26.2 % dissipation). PCB dissipation was not related to the abundance of LB400 or to the total bacterial counts. Bioaugmentation or fescue altered the structure of the bacterial community of the soil, not the combination of both. Principal component analysis showed that bioaugmentation tended to improve the control of the process (lower variability in PCB dissipation). Opposite to that bioaugmentation increased the variability of the structure of the bacterial community.


Bioaugmentation Burkholderia xenovorans LB400 Fescue Real-time PCR PCBs TTGE 



This work was supported by the Pôle de compétitivité AXELERA (Lyon, France) and the Alsace region (Strasbourg, France) for the doctoral fellowship of Camille Secher. The authors wish to thank SITA FD for providing soil used in this study.


  1. AFNOR (2005) Qualité du sol: détermination du pH. Norme 10390Google Scholar
  2. Baudoin E, Benizri E, Gucker A (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 2:135–145CrossRefGoogle Scholar
  3. Bedard DL, Quensen JF III (1995) Microbial reductive dechlorination of polychlorinated biphenyls. In: Young LY, Cerniglia CE, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss Division, New York, pp 127–216Google Scholar
  4. Bedard DL, Van Dort HM, May RJ, Smullen LA (1997) Enrichment of microorganisms that sequentially meta, para-dechlorinate the residue of Aroclor 1260 in Housatonic River sediment. Environ Sci Technol 11:3308–3313CrossRefGoogle Scholar
  5. Bois P, Huguenot D, Jézéquel K, Lollier M, Cornu JY, Lebeau T (2012) Herbicide mitigation in microcosms simulating stormwater basins subject to polluted water inputs. Wat Res (in press)Google Scholar
  6. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013CrossRefGoogle Scholar
  7. Briones AM Jr, Reichardt W (1999) Estimating microbial population counts by ‘most probable number’ using Microsoft Excel®. J Microbiol Methods 2:157–161CrossRefGoogle Scholar
  8. Brüggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489CrossRefGoogle Scholar
  9. Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73(16):5308–5319PubMedCrossRefGoogle Scholar
  10. Campanella BF, Bock C, Schröder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs, potential and limitations. Environ Sci pollut Res 1:73–85CrossRefGoogle Scholar
  11. Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159PubMedCrossRefGoogle Scholar
  12. Chekol T, Vough LR (2002) Assessing the phytoremediation potential of tall fescue and Sericea Lespedeza for organic contaminants in soil. Remed J 3:117–128CrossRefGoogle Scholar
  13. Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl–contaminated soils: the rhizosphere effect. Environ Int 6:799–804CrossRefGoogle Scholar
  14. Cook KL, Garland JL, Layton AC, Dionisi HM, Levine LH, Sayler GS (2006) Effect of microbial species richness on community stability and community function in a model plant-based wastewater processing system. Microb Ecol 52:725–737PubMedCrossRefGoogle Scholar
  15. Cravo-Laureau C, Hernandez-Raquet G, Vitte I, Jézéquel R, Bellet V, Godon JJ, Caumette P, Balaguer P, Duran R (2011) Role of environmental fluctuations and microbial diversity in degradation of hydrocarbons in contaminated sludge. Res Microb 162:888–895CrossRefGoogle Scholar
  16. Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657PubMedCrossRefGoogle Scholar
  17. Dercová K, Čičmanová J, Lovecká P, Demnerová K, Macková M, Hucko P, Kušnír P (2008) Isolation and identification of PCB-degrading microorganisms from contaminated sediments. Int Biodeter Biodegr 3:219–225CrossRefGoogle Scholar
  18. Duchaufour P (2001) Introduction à la science du sol: sol, végétation, environnement, 6th edn. Dunot, Paris, p 331Google Scholar
  19. Fagervold SK, May HD, Sowers KR (2007) Microbial reductive dechlorination of Aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 9:3009–3018CrossRefGoogle Scholar
  20. Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 5:433–449CrossRefGoogle Scholar
  21. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 2:225–243CrossRefGoogle Scholar
  22. He Y, Zhao Y, Zhou G, Huang M (2009) Evaluation of extraction and purification 282 methods for obtaining PCR-amplifiable DNA from aged refuse for microbial community 283 analysis. World J Microbiol Biot 25:2043–2051CrossRefGoogle Scholar
  23. Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov, sp. nov. Appl Environ Microbiol 1:251–259Google Scholar
  24. INERIS (2005) Fiche de données toxicologiques et environnementales des substances chimiques, PolychlorobiphénylesGoogle Scholar
  25. Juhanson J, Truu J, Heinaru E, Heinaru A (2009) Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol Ecol 3:446–455CrossRefGoogle Scholar
  26. Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122PubMedCrossRefGoogle Scholar
  27. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188PubMedCrossRefGoogle Scholar
  28. Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205PubMedCrossRefGoogle Scholar
  29. Kuiper I, Lagnedijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15PubMedCrossRefGoogle Scholar
  30. Lebeau T (2011) Bioaugmentation, biostimulation and biocontrol, chapter 7. In: Singh A, Parmar N, Kuhad RC (eds) Soil Biology, 28th edn., Bioaugmentation for in situ soil remediation: how to ensure the success of such a processSpringer, Berlin, pp 129–186Google Scholar
  31. Li Z, Kong S, Chen L, Bai Z, Ji Y, Liu J, Lu B, Han B, Wang Q (2011) Concentrations, spatial distributions and congener profiles of polychlorinated biphenyls in soils from a coastal city—Tianjin, China. Chemosphere 85:494–501PubMedCrossRefGoogle Scholar
  32. Lima D, Viana P, André S, Chelinho S, Costa C, Ribeiro R, Sousa JP, Fialho AM, Viegas CA (2009) Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74:187–192PubMedCrossRefGoogle Scholar
  33. Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 9:955–963CrossRefGoogle Scholar
  34. Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 1–2:111–125CrossRefGoogle Scholar
  35. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153PubMedCrossRefGoogle Scholar
  36. Newcombe DA, Crowley DE (1999) Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria. Appl Microbiol Biotechnol 51:877–882PubMedCrossRefGoogle Scholar
  37. Norini MP, Secher C, Lollier M, Jézéquel K, Cornu JY, Lebeau T Quantification of the 16S-23S rRNA internal transcribed spacers of Burkholderia xenovorans strain LB400 using real-time PCR in soil samples. Lett Appl Microbiol (in press)Google Scholar
  38. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643PubMedGoogle Scholar
  39. Parnell JJ, Denef VJ, Park J, Tsoi T, Tiedje JM (2010) Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 1:47–156Google Scholar
  40. Petrić I, Bru D, Udiković-Kolić N, Hršak D, Philippot L, Martin-Laurent F (2011a) Evidence for shifts in the structure and abundance of the microbial community in a long-term PCB-contaminated soil under bioremediation. J Hazard Mater 195:254–260PubMedCrossRefGoogle Scholar
  41. Petrić I, Hršak D, Fingler S, Udiković-Kolić N, Bru D, Martin-Laurent F (2011b) Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation. J Soils Sed 11:290–300CrossRefGoogle Scholar
  42. Ponce BL, Latorre VK, Gonzalez M, Seeger M (2011) Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400. Enzyme Microbial Technol 49:509–516CrossRefGoogle Scholar
  43. Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356CrossRefGoogle Scholar
  44. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Accessed 25 Jun 2012
  45. Romantschuk M, Sarand I, Petanen T, Peltola R, Jonsson-Vihanne M, Koivula T, Yrjala K, Haahtela K (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut 107:179–185PubMedCrossRefGoogle Scholar
  46. Ross G (2004) The public health implications of polychlorinated biphenyls (PCBs) in the environment. Rev Ecotox Environ Safety 59:275–291CrossRefGoogle Scholar
  47. Rovira AD (1969) Plant root exudates. Bot Rev 1:35–57CrossRefGoogle Scholar
  48. Schiefelbein JW (2000) Constructing a plant cell. The genetic control of root hair development. Plant Physiol 4:1525–1531CrossRefGoogle Scholar
  49. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 1:278–309CrossRefGoogle Scholar
  50. Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724Google Scholar
  51. Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 6:838–843CrossRefGoogle Scholar
  52. Singer AC, Smith D, Jury WA, Hathuc K, Crowley DE (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ Toxicol Chem 9:1998–2004CrossRefGoogle Scholar
  53. Smith KE, Schwab AP, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility study. J Environ Qual 36:239–244PubMedCrossRefGoogle Scholar
  54. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microbial Ecol 2:249–266CrossRefGoogle Scholar
  55. Sudjarid W, Chen IM, Monkong W, Anotai J (2012) Reductive Dechlorination of 2,3,4-Chlorobiphenyl by Biostimulation and Bioaugmentation. Environment Eng Sci 29:255–261CrossRefGoogle Scholar
  56. Tam NFY, Wong YS (2008) Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Mar Pollut Bull 6–12:716–726CrossRefGoogle Scholar
  57. Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915PubMedCrossRefGoogle Scholar
  58. Tiedje JM, Quensen JF, Chee-Sanford J, Schimel JP, Boyd SA (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240PubMedCrossRefGoogle Scholar
  59. Tremaroli V, Vacchi Suzzi C, Fedi S, Ceri H, Zannoni D, Turner RJ (2010) Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm-and planktonic-grown cells. FEMS Microbiol Ecol 2:291–301CrossRefGoogle Scholar
  60. Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Liu W, Christie P (2011) Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. J Hazard Mater 186:1438–1444PubMedCrossRefGoogle Scholar
  61. Vogel TM, Walter MV (2001) Bioaugmentation. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology. Amer Soc Microbiol, Washington, pp 952–959Google Scholar
  62. Weber JB, Mrozek E Jr (1979) Polychlorinated biphenyls: phytotoxicity, absorption and translocation by plants, and inactivation by activated carbon. Bull Environ Contam Toxicol 23:412–417PubMedCrossRefGoogle Scholar
  63. Wu Q, Bedard DL, Wiegel J (1997) Effect of incubation temperature on the route of microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphenyl in polychlorinated biphenyl (PCB)-contaminated and PCB-free freshwater sediments. Appl Environ Microbiol 7:2836–2843Google Scholar
  64. Wu JP, Luo HJ, Zhang Y, Yu M, Chen SJ, Mai BX, Yang ZY (2009) Biomagnification of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls in a highly contaminated freshwater food web from south China. Environ Pollut 3:904–909CrossRefGoogle Scholar
  65. Yadav JS, Quensen JF III, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 7:2560–2565Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. Secher
    • 1
  • M. Lollier
    • 1
  • K. Jézéquel
    • 1
  • J. Y. Cornu
    • 1
    • 2
  • L. Amalric
    • 3
  • T. Lebeau
    • 1
    • 4
  1. 1.EDBS, LVBE EA3991Université de Haute AlsaceColmar CedexFrance
  2. 2.UMR 1220 TCEMINRA (Institut National de la Recherche Agronomique)Villenave d’Ornon CedexFrance
  3. 3.BRGM, LAB/ENVOrléans CedexFrance
  4. 4.LUNAM, LPGN UMR 6112 CNRS, Université de NantesNantes Cedex 3France

Personalised recommendations