, Volume 24, Issue 4, pp 455–469 | Cite as

(Bio-)remediation of VCHC contaminants in a Technosol under unsaturated conditions

Original Paper


The remediation of dense non-aqueous phase liquids has always been a concern of both public and scientific interest groups. In this research work a modified physical concept of (bio)remediation of a volatile chlorinated hydrocarbon (VCHC) contamination was elaborated under laboratory conditions and modeled with HYDRUS-2D. In field dechlorination is influenced by both physicochemical and hydraulic properties of the substrate, e.g. texture, pore size distribution, pore liquid characteristics, e.g. viscosity, pH, surface tension, and dependent on the degree of saturation of the vadose zone. Undisturbed soil cores (100 cm³) were sampled from a Spolic Technosol. Considering hydraulic properties and functions, unsaturated percolation was performed with vertically and horizontally structured samples. VCHC concentrations were calculated prior, during, and after each percolation cycle. According to laboratory findings, microemulsion showed the most efficient results with regard to flow behavior in the unsaturated porous media and its accessibility for bacteria as nutrient. The efficiency of VCHC remediation could be increased by the application of a modified pump-and-treat system: the injection of bacteria Dehalococcoides ethanogenes with microemulsion, and extraction at a constant matric potential level of −6 kPa. Achieved data was used for HYDRUS-2D simulations, modeling in situ conditions, demonstrating the practical relevance (field scale) of performed unsaturated percolation (core scale), and in order to exclude capillary barrier effects.


Unsaturated percolation Soil structure Anisotropy Volatile chlorinated hydrocarbons (VCHC) Spolic Technosol HYDRUS-2D 



The first author and the co-authors thank the Biesterfeld Company for their financial support. A special thank is dedicated to Prof. Dr. Herges of the Institute of Organic Chemistry, CAU Kiel for his scientific support in the laboratory, and all technical assistants, who were involved into this project, and J. Rostek, Institute for Plant Nutrition and Soil Science, CAU Kiel for his technical support.


  1. Barth G, Illangasekare TH, Rajaram H, Ruan H (1996) Model calibration and verification for entrapped NAPL using tracer tests in a large, two-dimensional tank with heterogeneous packing. IAHS Publ. 237:169–178Google Scholar
  2. Barth G, Illangasekare TH, Rajaram H (2003) The effect of entrapped non-aqueous phase liquids on tracer transport in heterogeneous porous media: laboratory experiments at the intermediate scale. J Contam Hydrol 67:247–268PubMedCrossRefGoogle Scholar
  3. Biesterfeld Chemiehandel GmbH & Co. KG (2007) 5. Zwischenbericht Grundwassersanierung (5th groundwater remediation report). Itzehoe (in German)Google Scholar
  4. Bradford SA, Abriola LM, Rathfelder KM (1998) Flow and entrapment of dense nonaqueous phase liquids in physically and chemically heterogeneous aquifer formations. Adv Water Resour 22:117–132CrossRefGoogle Scholar
  5. Christ JA, Lemke LD, Abriola LM (2005) Comparison of two-dimensional simulations of dense nonaqueous liquids (DNAPLs): migration and entrapment in a non-uniform permeability field. Water Resour Res 41:W01007CrossRefGoogle Scholar
  6. Compos R Jr (1998) Multiple experimental realizations of dense nonaqueous phase liquid spreading in water saturated heterogeneous porous media. MSc thesis. University of Colorado, BoulderGoogle Scholar
  7. Dekker TJ, Abriola LM (2000) The influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations. J Contam Hydrol 42:187–218CrossRefGoogle Scholar
  8. DIN EN ISO 10301 (German Institute for Standardization, European Standard, in co-operation with the International Organization for Standardization) (1997) Water quality—Determination of highly volatile halogenated hydrocarbons—Gas-chromatographic methodsGoogle Scholar
  9. DIN EN ISO 22155 (German Institute for Standardization, European Standard, in co-operation with the International Organization for Standardization) (2005) Soil quality—Gas chromatographic quantitative determination of volatile aromatic and halogenated hydrocarbons and selected ethers—Static headspace methodGoogle Scholar
  10. Dörner J, Horn R (2006) Anisotropy of pore functions in structured Stagnic Luvisols in the Weichselian morain region in N-Germany. J Plant Nutr Soil Sci 169:213–220CrossRefGoogle Scholar
  11. Fagerlund F, Illangasekare TH, Niemi A (2007) Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 1. experimental methods and two-layered reference case. Vadose Zone J 6:471–482CrossRefGoogle Scholar
  12. Fagerlund F, Niemi A, Illangasekare TH (2008) Modeling of nonaqueous phase liquid (NAPL) migration in heterogeneous saturated media: effects of hysteresis and fluid immobility in constitutive relations. Water Resour Res 44:W03409CrossRefGoogle Scholar
  13. Gerhard JI, Kueper BH (2003) Capillary pressure characteristics necessary for simulating DNAPL infiltration, redistribution and immobilization in saturated porous media. Water Resour Res 39:1212Google Scholar
  14. Gimmi T, Flühler H, Studer B, Rasmuson A (1993) Transport of volatile chlorinated hydrocarbons in unsaturated aggregated media. Water Air Soil Poll. 68:291–305CrossRefGoogle Scholar
  15. Hartge H, Horn H (2009) Die physikalische Untersuchung von Böden: Praxis, Messmethoden. Auswertung, SchweizerbarthGoogle Scholar
  16. Hartmann A (1999) Die Bedeutung der Bodenstruktur und der hydraulischen Bodeneigenschaften für die Kationenaustausch- und Transportprozesse am Beispiel zweier Parabraunerden. PhD Thesis, Christian-Albrechts-University zu Kiel, Germany (in German)Google Scholar
  17. Held RJ, Illangasekare TH (1995) Fingering of dense nonaqueous phase liquids in porous media: 1. Experimental investigation. Water Resour Res 31:1213–1222CrossRefGoogle Scholar
  18. Hofstee C, Walker RC, Dane JH (1998) Infiltration and redistribution of perchloroethylene in stratified water-saturated porous media. Soil Sci Soc Am J 62:13–22CrossRefGoogle Scholar
  19. Illangasekare TH, Ramsey JL Jr, Jensen KH, Butts MB (1995) Experimental study of movement and distribution of dense organic contaminants in heterogeneous aquifers. J Contam Hydrol 20:1–25CrossRefGoogle Scholar
  20. IUSS Working Group WRB (2006) World Reference Base for Soil Resources 2006. World Soil Resources Report No. 103. FAO, RomeGoogle Scholar
  21. Klute A (2006) Methods of soil analysis. Part 1—physical and mineralogical methods. American Society of Agronomy. SSSA book series 5. MadisonGoogle Scholar
  22. Kueper BH, Frind EO (1991) Two-phase flow in heterogeneous porous media: 1. Model development. Water Resour Res 27:1049–1057CrossRefGoogle Scholar
  23. Kueper BH, Abbott W, Farquhar G (1989) Experimental observations of multiphase flow in heterogeneous porous media. J Contam Hydrol 5:83–95CrossRefGoogle Scholar
  24. Kueper BH, Redman D, Starr RC, Reitsma S, Mah M (1993) A field experiment to study the behavior of tetrachloroethylene below the water table: spatial distribution of residual and pooled DNAPL. Ground Water 31:756–766CrossRefGoogle Scholar
  25. Lemke LD, Abriola LM, Lang JR (2004) Influence of hydraulic property correlation on predicted dense nonaqueous phase liquid source architecture, mass recovery and contaminant flux. Water Resour Res 40:12417Google Scholar
  26. Magesan GN, Vogeler I, Scotter DR, Clothier BE, Tillman RW (1995) Solute movement through two unsaturated soils. Aust J Soil Res 33:585–596CrossRefGoogle Scholar
  27. Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by dehalococcoides ethenogenes. Environ Sci Technol 35:516–521PubMedCrossRefGoogle Scholar
  28. Mercer JW, Cohen RM (1990) A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J Contam Hydrol 6:107–163CrossRefGoogle Scholar
  29. Mualem Y (1984) Anisotropy of unsaturated soils. Soil Sci Soc Am J 48:505–509CrossRefGoogle Scholar
  30. Nijenhuis I, Zinder SH (2005) Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes Strain 195. Appl Environ Microbiol 71:1664–1667PubMedCrossRefGoogle Scholar
  31. Oostrom M, Hofstee C, Walker RC, Dane JH (1999) Movement and remediation of trichloroethylene in a saturated heterogeneous medium: 1. Spill behavior and initial dissolution. J Contam Hydrol 37:159–178CrossRefGoogle Scholar
  32. Oostrom M, Dane JH, Wietsma TW (2005) Removal of carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water table reduction. Vadose Zone J 4:1170–1182CrossRefGoogle Scholar
  33. Plagentz V, Ebert M, Dahmke A (2005) CKW-Abbaupotenzial im Abstrom von Fe0-Reaktionswänden. Z Hydrogeol DGG 10:216–226 (in German)Google Scholar
  34. Poulsen MM, Kueper BH (1992) A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ Sci Technol 26:889–895CrossRefGoogle Scholar
  35. Schulte M (1998) Boden- und Grundwasseruntersuchungen eines mit leichtflüchtigen aromatischen und chlorierten Kohlenwasserstoffen verunreinigten Porengrundwasserleiters—soil and groundwater analyses of a porous aquifer contaminated with volatile aromatic and chlorinated hydrocarbons. N Jb Geol Paläont Abh 208:205–220 (in German)Google Scholar
  36. Šimůnek J, Šejna M, van Genuchten MT (1999) The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media. U.S. Salinity Laboratory Agricultural Research Service. U.S. Department of Agriculture, RiversideGoogle Scholar
  37. Smith JE, Zhang ZF (2001) Determining effective interfacial tension and predicting finger spacing for DNAPL penetration into water-saturated porous media. J Contam Hydrol 48:167–183PubMedCrossRefGoogle Scholar
  38. Soga K, Page JWE, Illangasekare T (2004) A review of NAPL source zone remediation and the mass flux approach. J Hazard Mater 110:13–27PubMedCrossRefGoogle Scholar
  39. Stupp HD (2000) Verhalten von DNAPLs im Untergrund unter besonderer Berücksichtigung der LCKW Teil 1: Altlasten Spektrum 6:338-350 (in German)Google Scholar
  40. Stupp HD (2001) Verhalten von DNAPLs im Untergrund unter besonderer Berücksichtigung der LCKW Teil 2: Altlasten Spektrum 6:42-44 (in German)Google Scholar
  41. Stupp HD, Bakenhus A, Gass M, Schwaar I, Lorenz D (2006) Ausbreitung von CKW und MTBE im Grundwasser–Grundwassertransport und Fahnenlänge. Altlasten Spektrum 5:256–266 (in German)Google Scholar
  42. Tigges U (2000) Untersuchungen zum mehrdimensionalen Wassertransport unter besonderer Berücksichtigung der Anisotropie der hydraulischen Leitfähigkeit. PhD Thesis (in German), Schriftenreihe des Instituts für Pflanzenernährung und Bodenkunde CAU Kiel 56, pp 166Google Scholar
  43. van Genuchten MT, Leij FJ, Yates SR (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils. U. S. Salinity Laboratory Agricultural Research Service. U. S. Department of Agriculture, RiversideGoogle Scholar
  44. Woche SK, Goebel M-O, Kirkham MB, Horton R, Van der Ploeg RR, Bachmann J (2005) Contact angle of soils as affected by depth, texture, and land management. Eur J Soil Sci 56:239–251CrossRefGoogle Scholar
  45. Zellner R, Becker KH, Zetzsch C, Wiesner J, Behret H, Endres F (2005) Volatile chlorinated hydrocarbons: occurrence, fate and impact. GDCh monography 34Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute for Plant Nutrition and Soil ScienceChristian-Albrechts-University zu KielKielGermany

Personalised recommendations