Skip to main content
Log in

Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Stimulation of native microbial populations in soil by the addition of small amounts of secondary carbon sources (cosubstrates) and its effect on the degradation and theoretical mineralization of DDT [l,l,l-trichloro-2,2-bis(p-chlorophenyl)ethane] and its main metabolites, DDD and DDE, were evaluated. Microbial activity in soil polluted with DDT, DDE and DDD was increased by the presence of phenol, hexane and toluene as cosubstrates. The consumption of DDT was increased from 23 % in a control (without cosubstrate) to 67, 59 and 56 % in the presence of phenol, hexane and toluene, respectively. DDE was completely removed in all cases, and DDD removal was enhanced from 67 % in the control to ~86 % with all substrates tested, except for acetic acid and glucose substrates. In the latter cases, DDD removal was either inhibited or unchanged from the control. The optimal amount of added cosubstrate was observed to be between 0.64 and 2.6 mg C \( {\text{g}}^{ - 1}_{\text{dry soil}} \). The CO2 produced was higher than the theoretical amount for complete cosubstrate mineralization indicating possible mineralization of DDT and its metabolites. Bacterial communities were evaluated by denaturing gradient gel electrophoresis, which indicated that native soil and the untreated control presented a low bacterial diversity. The detected bacteria were related to soil microorganisms and microorganisms with known biodegradative potential. In the presence of toluene a bacterium related to Azoarcus, a genus that includes species capable of growing at the expense of aromatic compounds such as toluene and halobenzoates under denitrifying conditions, was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues—a review. New Zealand J Agri Res 40:269–282

    Article  CAS  Google Scholar 

  • Castelo-Grande T, Augusto PA, Monteiro P, Estevez AM, Barbosa D (2010) Remediation of soils contaminated with pesticides: a review. Intern J Environ Anal Chem 90(3–6):438–467

    Article  CAS  Google Scholar 

  • Chauhan S, Barbieri P, Wood TK (1998) Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64(8):3023–3024

    PubMed  CAS  Google Scholar 

  • Dalla Villa R, Pupo Nogueira RF (2006) Oxidation of p, p′-DDT and p, p′-DDE in highly and long-term contaminated soil using Fenton reaction in a slurry system. Sci Total Environ 371:11–18

    Article  PubMed  CAS  Google Scholar 

  • Deepthi N, Manonmani HK (2007) Co-metabolic degradation of dichloro diphenyl trichloroethane by a defined microbial consortium. Res J Environ Toxicol 1(2):85–91. doi:10.3923/rjet.2007.85.91

    Article  CAS  Google Scholar 

  • Díaz-Barriga F, Borja-Aburto V, Waliszewski S, Yáñez L (2003) DDT in Mexico. In: Fiedler H (ed) The handbook of environmental chemistry, vol 3 part o persistent organic pollutants. Springer, Berlin

    Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184(1–3):281–289

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    Article  PubMed  CAS  Google Scholar 

  • Foght J, April T, Biggar K, Aislabie JM (2001) Bioremediation of DDT-contaminated soils: a review. Bioremediation J 5(3):225–246

    Article  CAS  Google Scholar 

  • Guerin WF, Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol 54(4):937–944

    PubMed  CAS  Google Scholar 

  • Harder W, Dijkhuizen L (1982) Strategies of mixed substrate utilization in microorganisims. Phil Trans R Soc Lond B 297:459–480

    Article  CAS  Google Scholar 

  • Kamanavalli CM, Ninnekar HZ (2004) Biodegradation of DDT by Pseudomonas species. Curr Microbiol 48:10–13

    Article  PubMed  CAS  Google Scholar 

  • Kantachote D, Naidu R, Singleton I, McClure N, Harch BD (2001) Resistance of microbial populations in DDT-contaminated and uncontaminated soils. Appl Soil Ecol 16:85–90

    Article  Google Scholar 

  • Kantachote D, Naidu R, Williams B, McClure N, Megharaj M, Singleton I (2004) Bioremediation of DDT-contaminated soil: enhancement by seaweed addition. J Chem Technol Biotechnol 79:632–638

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, Carrothers TJ (1998) Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32(1):88–100

    Article  CAS  Google Scholar 

  • Mendonça E, Martins A, Anselmo A (2004) Biodegradation of natural phenolic compounds as single and mixed substrates by Fusarium flocciferum. J Biotechnol 7(1):30–37

    Google Scholar 

  • Mu DY, Scow KM (1994) Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl Environ Microbiol 60(7):2661–2665

    PubMed  CAS  Google Scholar 

  • Ortíz I, Auria R, Sigoillot JC, Revah S (2003) Enhancing phenanthrene biomineralization in a polluted soil using gaseous toluene as a cosubstrate. Environ Sci Technol 37:805–810

    Article  PubMed  Google Scholar 

  • Ortíz I, Velasco A, Revah S (2006) Effect of toluene as gaseous cosubstrate in bioremediation of hydrocarbon-polluted soil. J Hazard Mater B1331:112–117

    Article  Google Scholar 

  • Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene and trichloroethylene. Appl Environ Microbiol 66(9):4098–4104

    Article  PubMed  CAS  Google Scholar 

  • Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105(6):614–621

    Article  PubMed  CAS  Google Scholar 

  • Purnomo AS, Koyama F, Mori T, Kondo R (2010) DDT degradation potential of cattle manure compost. Chemosphere 80:619–624

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shareef A, uz Zaman S (2010) Catalytic hydrodechlorination of organochlorine pesticide (DDT) in alkaline 2-propanol. J Basic Appl Sci 6(2):73–80

    CAS  Google Scholar 

  • Sinclair CJ, Boxall ABA (2003) Assessing ecotoxicity of pesticide transformations products. Env Sci Technol 37:4617–4625

    Article  CAS  Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Lal R, Tripathfl KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19(3):197–225

    Article  PubMed  CAS  Google Scholar 

  • Song B, Palleroni NJ, Häggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66(8):3446–3453

    Article  PubMed  CAS  Google Scholar 

  • Thomson JD, Higgins DG, Gibson TJ (2004) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  Google Scholar 

  • Tian H, Li J, Zou L, Mua Z, Hao Z (2008) Removal of DDT from aqueous solutions using mesoporous silica materials. J Chem Technol Biotechnol 84:490–496

    Article  Google Scholar 

  • US-DHS (2002) Toxicological Profile for DDT, DDD and DDE Atlanta, GA

  • US-EPA (2007a) Organochlorine pesticides by gas chromatography, method 8081B. Washington

  • US-EPA (2007b) Ultrasonic extraction, method 3550C. Washington

  • Van Schie PM, Young LY (1998) Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol 64(7):2432–2438

    PubMed  Google Scholar 

  • Walters GW, Aitken MD (2001) Surfactant-enhanced solubilization and anaerobic biodegradation of 1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethene (DDT) in contaminated soil. Water Environ Res 73(1):15–23

    Article  PubMed  CAS  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kondo R (2011) A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22(5):859–867. doi:10.1007/s10532-010-9443-z

    Article  PubMed  CAS  Google Scholar 

  • Yeager CM, Arthur KM, Bottomley PJ, Arp DJ (2004) Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation 15:19–28

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Yi X, Li M, Liu L, Ma W (2010) Biodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chin J Chem Eng 18(3):486–492

    Article  CAS  Google Scholar 

  • Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM (1995) Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bateriol 45(3):500–506

    Article  CAS  Google Scholar 

  • Zitko V (2003) Persistent organic pollutants. In: Fiedler H (ed) The handbook of environmental chemistry, vol 3. Springer, Berlin, pp 48–90

    Google Scholar 

Download references

Acknowledgments

The authors thank Dra. Leticia Yañez from Universidad Autónoma de San Luis Potosí for the donation of soil samples and Dra. Maribel Hernández from Universidad Autónoma Metropolitana for her suggestions to improve the manuscript. This work was financed by Consejo Nacional de Ciencia y Tecnología (Project CONACYT CB-61218) and by Secretaría de Educación Pública (Project SEP-PROMEP UAM-PTC-067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmene Ortíz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortíz, I., Velasco, A., Le Borgne, S. et al. Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates. Biodegradation 24, 215–225 (2013). https://doi.org/10.1007/s10532-012-9578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9578-1

Keywords

Navigation