, Volume 23, Issue 5, pp 705–716 | Cite as

Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541

  • L. Giacomucci
  • F. Toja
  • P. Sanmartín
  • L. Toniolo
  • B. Prieto
  • F. Villa
  • F. Cappitelli
Original Paper


Nitrocellulose is one of the most commonly used compounds in ammunition and paint industries and its recalcitrance to degradation has a negative impact on human health and the environment. In this study the capability of Desulfovibrio desulfuricans ATCC 13541 to degrade nitrocellulose as binder in paint was assayed for the first time. Nitrocellulose-based paint degradation was followed by monitoring the variation in nitrate, nitrite and ammonium content in the culture medium using Ultraviolet–Visible spectroscopy. At the same time cell counts and ATP assay were performed to estimate bacterial density and activity in all samples. Infrared spectroscopy and colorimetric measurements of paint samples were performed to assess chemical and colour changes due to the microbial action. Microscope observations of nitrocellulose-based paint samples demonstrated the capability of the bacterium to adhere to the paint surface and change the paint adhesive characteristics. Finally, preliminary studies of nitrocellulose degradation pathway were conducted by assaying nitrate- and nitrite reductases activity in D. desulfuricans grown in presence or in absence of paint. We found that D. desulfuricans ATCC 13541 is able to transform nitrocellulose as paint binder and we hypothesised ammonification as degradation pathway. The results suggest that D. desulfuricans ATCC 13541 is a good candidate as a nitrocellulose-degrading bacterium.


Nitrocellulose Paint Microbial degradation Desulfovibrio desulfuricans Sulphate-reducing bacteria 



We thank Dr. Kevin J. Purdy, University of Warwick, for his helpful suggestions made in the course of this research. We also thank Edoardo Accattino for his technical assistance in protein extraction. This study has been partially financed by the Xunta de Galicia (09TMT014203PR) and Ministry of Science and Innovation (BES-2007-16996).


  1. APHA, AWWA, WEF (eds) (1998) Standard methods for the examination of water and wastewater, vol 4–113/4–114. 20 edn. APHA, WashinghtonGoogle Scholar
  2. Auer N, Hedger JN, Evans CS (2005) Degradation of nitrocellulose by fungi. Biodegradation 16(3):229–236. doi: 10.1007/s10532-004-0896-9 PubMedCrossRefGoogle Scholar
  3. Barton LL, Goulhen F, Bruschi M, Woodards NA, Plunkett RM, Rietmeijer FJM (2007) The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals 20(3–4):291–302. doi: 10.1007/s10534-006-9059-2 PubMedCrossRefGoogle Scholar
  4. Berns RS (2000) Billmeyer and Saltzman’s principles of color technology, 3rd edn. Wiley, New YorkGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  6. Brown WRJ (1957) Color discrimination of twelve observers. J Opt Soc Am 47(2):137–143. doi: 10.1364/JOSA.47.000137 PubMedCrossRefGoogle Scholar
  7. Bursakov SA, Carneiro C, Almendra MJ, Duarte RO, Caldeira J, Moura I, Moura JJ (1997) Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Biochem Biophys Res Commun 239(3):816–822. doi: 10.1006/bbrc.1997.7560 PubMedCrossRefGoogle Scholar
  8. Buzzini P, Massonnet G (2004) A market study of green spray paints by Fourier transform infrared (FTIR) and Raman spectroscopy. Sci Justice 44(3):123–131. doi: 10.1016/S1355-0306(04)71704-9 PubMedCrossRefGoogle Scholar
  9. Cappitelli F, Vicini S, Piaggio P, Abbruscato P, Princi E, Casadevall A, Nosanchuk JD, Zanardini E (2005) Investigation of fungal deterioration of synthetic paint binders using vibrational spectroscopic techniques. Macromol Biosci 5(1):49–57. doi: 10.1002/mabi.200400134 PubMedCrossRefGoogle Scholar
  10. Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72(5):3733–3737. doi: 10.1128/AEM.72.5.3733-3737.2006 PubMedCrossRefGoogle Scholar
  11. Cappitelli F, Abbruscato P, Foladori P, Zanardini E, Ranalli G, Principi P, Villa F, Polo A, Sorlini C (2009) Detection and elimination of cyanobacteria from frescoes: the case of the St. Brizio Chapel (Orvieto Cathedral, Italy). Microb Ecol 57(4):633–639. doi: 10.1007/s00248-008-9441-4 PubMedCrossRefGoogle Scholar
  12. Chen BY, Utgikar VP, Harmon SM, Tabak HH, Bishop DF, Govind R (2000) Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. Int Biodeter Biodegr 46(1):11–18. doi: 10.1016/S0964-8305(00)00054-8 CrossRefGoogle Scholar
  13. CIE (1986) Publication 15–2: colorimetry. CIE Central Bureau, ViennaGoogle Scholar
  14. El-Diwani G, El-Ibiari NN, Hawash SI (2009) Treatment of hazardous wastewater contaminated by nitrocellulose. J Hazard Mater 167(1–3):830–834. doi: 10.1016/j.jhazmat.2009.01.063 PubMedCrossRefGoogle Scholar
  15. Freedman DL, Caenepeel BM, Kim BJ (1996) Biotransformation of nitrocellulose under methanogenic conditions. Water Sci Technol 34(5–6):327–334. doi: 10.1016/0273-1223(96)00662-2 Google Scholar
  16. Freedman DL, Cashwell JM, Kim BJ (2002) Biotransformation of explosive-grade nitrocellulose under denitrifying and sulfidogenic conditions. Waste Manage 22(3):283–292. doi: 10.1016/S0956-053X(01)00032-0 CrossRefGoogle Scholar
  17. Giacomucci L, Bertoncello R, Salvadori O, Martini I, Favaro M, Villa F, Sorlini C, Cappitelli F (2011) Microbial deterioration of artistic tiles from the facade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb Ecol 62(2):287–298. doi: 10.1007/s00248-011-9812-0 PubMedCrossRefGoogle Scholar
  18. Govaert F, Bernard M (2004) Discriminating red spray paints by optical microscopy, Fourier transform infrared spectroscopy and X-ray fluorescence. Forensic Sci Int 140(1):61–70. doi: 10.1016/j.forsciint.2003.11.015 PubMedCrossRefGoogle Scholar
  19. Hardeberg AY (1999) Acquisition and reproduction of color images: colorimetric and multispectral approaches. PhD, Ecole Nationale Superieure des Telecommunications, PhD ThesisGoogle Scholar
  20. Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186(23):7944–7950. doi: 10.1128/Jb.186.23.7944-7950.2004 PubMedCrossRefGoogle Scholar
  21. Keith SM, Herbert RA (1983) Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans. FEMS Microbiol Lett 18(1–2):55–59. doi: 10.1111/j.1574-6968.1983.tb00448.x CrossRefGoogle Scholar
  22. Kraft B, Strous M, Tegetmeyer HE (2011) Microbial nitrate respiration—genes, enzymes and environmental distribution. J Biotechnol 155(1):104–117. doi: 10.1016/j.jbiotec.2010.12.025 PubMedCrossRefGoogle Scholar
  23. Liu M-C, Costa C, Moura I (1994) Hexaheme nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774). Methods Enzymol 243:303–319. doi: 10.1016/0076-6879(94)43023-3 CrossRefGoogle Scholar
  24. Macadam DL (1942) Visual Sensitivities to Color Differences in Daylight. J Opt Soc Am 32(5):247–273. doi: 10.1364/JOSA.32.000247 CrossRefGoogle Scholar
  25. Marietou A, Griffiths L, Cole J (2009) Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. J Bacteriol 191(3):882–889. doi: 10.1128/jb.01171-08 PubMedCrossRefGoogle Scholar
  26. Mitchell GJ, Jones JG, Cole JA (1986) Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch Microbiol 144(1):35–40. doi: 10.1007/BF00454953 CrossRefGoogle Scholar
  27. Moura I, Bursakov S, Costa C, Moura JJ (1997) Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3(5):279–290. doi: 10.1006/anae.1997.0093 PubMedCrossRefGoogle Scholar
  28. Moura JJG, Gonzalez P, Moura I, Fauque G, Barton LL, Hamilton WA (2007) Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Environmental and engineered systems. Cambridge University Press, Cambridge, pp 241–264CrossRefGoogle Scholar
  29. Pepe O, Sannino L, Palomba S, Anastasio M, Blaiotta G, Villani F, Moschetti G (2010) Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 165(1):21–32. doi: 10.1016/j.micres.2008.03.005 PubMedCrossRefGoogle Scholar
  30. Pereira IAC, LeGall J, Xavier AV, Teixeira M (2000) Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim Biophys Acta 1481(1):119–130. doi: 10.1016/S0167-4838(00)00111-4 PubMedCrossRefGoogle Scholar
  31. Petrova OE, Tarasova NB, Davydova MN (2002) Biotechnological potential of sulfate-reducing bacteria for transformation of nitrocellulose. Anaerobe 8(6):315–317. doi: 10.1016/S9964(03)00029-5 PubMedCrossRefGoogle Scholar
  32. Petrova OE, Tarasova NB, Alyabyev AJ, Davydova MN, Loseva NL (2006) Calorimetric studies of the growth of Desulfovibrio desulfuricans in the presence of nitrocellulose. Thermochim Acta 445(1):67–69. doi: 10.1016/j.tca.2005.09.017 CrossRefGoogle Scholar
  33. Petrova OE, Tarasova NB, Davydova MN (2010) On hydrolysis of cellulose and nitrocellulose under sulfate-reducing conditions. World J Microbiol Biotechnol 26(1):189–192. doi: 10.1007/s11274-009-0156-6 CrossRefGoogle Scholar
  34. Prieto B, Sanmartín P, Silva B, Martínez-Verdú F (2010) Measuring the color of granite rocks: a proposed procedure. Color Res Appl 35(5):368–375. doi: 10.1002/col.20579 CrossRefGoogle Scholar
  35. Prieto B, Sanmartín P, Pereira-Pardo L, Silva B (2011) Recovery of the traditional colours of painted woodwork in the Historical Centre of Lugo (NW Spain). J Cult Herit 12(3):279–286. doi: 10.1016/j.culher.2010.12.009 CrossRefGoogle Scholar
  36. Ranalli G, Recchiuti JE, Grazia L, Del Puppo E (1998) Bioluminescence and impedance monitoring to detect the activity of starter cultures during frozen storage. Ann Microbiol 48(2):169–180Google Scholar
  37. Ranalli G, Zanardini E, Pasini P, Roda A (2003) Rapid biodeteriogen and biocide diagnosis on artwork: a bioluminescent low-light imaging technique. Ann Microbiol 53(1):1–13Google Scholar
  38. Sanmartin P, Villa F, Silva B, Cappitelli F, Prieto B (2011) Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments. Biodegradation 22(4):763–771. doi: 10.1007/s10532-010-9402-8 PubMedCrossRefGoogle Scholar
  39. Segalini S, Chirico AD, Depinto G, Pegoraro M Antigraffiti removers and antigraffiti coatings. In: XXV Fatipec Congress, Turin, 2000. pp 323–337Google Scholar
  40. Seitz HJ, Cypionka H (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen cCoupled to ammonification of nitrate or nitrite. Arch Microbiol 146(1):63–67. doi: 10.1007/BF00690160 CrossRefGoogle Scholar
  41. Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26(3):285–309. doi: 10.1111/j.1574-6976.2002.tb00616.x PubMedCrossRefGoogle Scholar
  42. Slack RJ, Gronow JR, Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ 337(1–3):119–137. doi: 10.1016/j.scitotenv.2004.07.002 PubMedCrossRefGoogle Scholar
  43. Souza JVB, da Silva ES, da Silva FT, Paiva TCB (2005) Fungal treatment of a delignification effluent from a nitrocellulose industry. Bioresource Technol 96(17):1936–1942. doi: 10.1016/j.biortech.2005.01.027 CrossRefGoogle Scholar
  44. Stoye D, Freitag W (1998) Introduction. In: Stoye D, Freitag W (eds) Paints, coatings, and solvents, 2nd edn. Wiley, Weinheim, pp 1–10CrossRefGoogle Scholar
  45. Tarasova NB, Petrova OE, Davydova MN, Khairutdinov BI, Klochkov VV (2004) Changes in the nitrocellulose molecule induced by sulfate-reducing bacteria Desulfovibrio desulfuricans 1,388. The enzymes participating in this process. Biochemistry (Mosc) 69(7):809–812. doi: 10.1023/B:BIRY.0000040208.67569.d1 CrossRefGoogle Scholar
  46. Tarasova NB, Petrova OE, Faizullin DA, Davydova MN (2005) FTIR-spectroscopic studies of the fine structure of nitrocellulose treated by Desulfovibrio desulfuricans. Anaerobe 11(6):312–314. doi: 10.1016/j.anaerobe.2005.03.002 PubMedCrossRefGoogle Scholar
  47. Tarasova NB, Gorshkov OV, Petrova OE (2009) Activity of nitrate reductase in Desulfovibrio vulgaris VKM 1388. Microbiologiia 78(2):160–164. doi: 10.1134/S0026261709020040 Google Scholar
  48. Völz HG (2001) Industrial color testing. Wiley, WeinheimCrossRefGoogle Scholar
  49. Wyszecki G, Stiles WS (1982) Color science, concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New YorkGoogle Scholar
  50. Zieba-Palus J (2005) Examination of spray paints by the use of reflection technique of microinfrared spectroscopy. J Mol Struct 744–747:229–234. doi: 10.1016/j.molstruc.2004.12.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • L. Giacomucci
    • 1
  • F. Toja
    • 2
  • P. Sanmartín
    • 3
  • L. Toniolo
    • 2
  • B. Prieto
    • 3
  • F. Villa
    • 1
  • F. Cappitelli
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Alimentari e MicrobiologicheUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’Politecnico di MilanoMilanItaly
  3. 3.Departamento de Edafología y Química AgrícolaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations