Skip to main content
Log in

Dimensionless parameters to summarize the influence of microbial growth and inhibition on the bioremediation of groundwater contaminants

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Monod expressions are preferred over zero- and first-order decay expressions in modeling contaminants biotransformation in groundwater because they better represent complex conditions. However, the wide-range of values reported for Monod parameters suggests each case-study is unique. Such uniqueness restricts the usefulness of modeling, complicates an interpretation of natural attenuation and limits the utility of a bioattenuation assessment to a small number of similar cases. In this paper, four Monod-based dimensionless parameters are developed that summarize the effects of microbial growth and inhibition on groundwater contaminants. The four parameters represent the normalized effective microbial growth rate (η), the normalized critical contaminant/substrate concentration (S*), the critical contaminant/substrate inhibition factor (N), and the bioremediation efficacy (η*). These parameters enable contaminated site managers to assess natural attenuation or augmented bioremediation at multiple sites and then draw comparisons between disparate remediation activities, sites and target contaminants. Simulations results are presented that reveal the sensitivity of these dimensionless parameters to Monod parameters and varying electron donor/acceptor loads. These simulations also show the efficacy of attenuation (η*) varying over space and time. Results suggest electron donor/acceptor amendments maintained at relative concentrations S* between 0.5 and 1.5 produce the highest remediation efficiencies. Implementation of the developed parameters in a case study proves their usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez-Cohen L, Speitel GE (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12(2):105–126

    Article  PubMed  CAS  Google Scholar 

  • Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substance. Biotechnol Bioeng 10:707–723

    Article  CAS  Google Scholar 

  • Atteia O, Guillot C (2007) Factors controlling BTEX and chlorinated solvents plume length under natural attenuation conditions. J Contam Hydrol 90(1–2):81–104

    Article  PubMed  CAS  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York

  • Bauer RD, Maloszewski P, Zhang Y, Meckenstock RU, Griebler C (2008) Mixing-controlled biodegradation in a toluene plume—results from two-dimensional laboratory experiments. J Contam Hydrol 96(1–4):150–168

    Article  PubMed  CAS  Google Scholar 

  • Baveye P, Valocchi A (1989) An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers. Water Resour Res 25(6):1413–1421

    Article  CAS  Google Scholar 

  • Bazin MJ, Saunders PT, Prosser JI (1976) Models of microbial interactions in the soil. CRC Crit Rev Microbiol 4:463–498

    Article  PubMed  CAS  Google Scholar 

  • Bedient PB, Rifai HS, Newell CJ (1994) Ground water contamination—transport and remediation. Prentice-Hall, Englewood Cliffs, NJ

  • Bekins BA, Warren E, Godsy ME (1997) Comparing zero- and first-order approximations to the Monod model. In: Proceedings of the fourth international in situ and on-site bioremediation symposium, Battelle Press, New Orleans, LA, vol 5, pp 547–552

  • Bell LSJ, Binning P (2002) A forward particle tracking Eulerian Lagrangian Localized Adjoint Method for multicomponent reactive transport modelling of biodegradation. Dev Water Sci 47:703–710

    Article  Google Scholar 

  • Borden RC, Bedient PB (1986) Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation: 1. Theoretical development. Water Resour Res 22(13):1973–1982

    Article  CAS  Google Scholar 

  • Borden RC, Lee MD, Wilson JT, Ward CH, Bedient PB (1984) Modeling the migration and biodegradation of hydrocarbons derived from a wood-creosoting process waste. In: Proceedings of the National Water Well Association, American Petroleum Institute conference on petroleum hydrocarbons and organic chemicals in groundwater: prevention, detection and restoration, Houston, TX, pp 130–143

  • Bouwer EJ, Cobb GD (1987) Modeling of biological processes in the subsurface. Water Sci Technol 19:769–779

    CAS  Google Scholar 

  • Bouwer EJ, McCarty PL (1984) Modeling of trace organics biotransformation in the subsurface. Ground Water 22:433–440

    Article  CAS  Google Scholar 

  • Brooks SC, Carroll SL, Jardine PM (1999) Sustained bacterial reduction of Co(III) EDTA in the presence of competing geochemical oxidation during dynamic flow. Environ Sci Technol 33:3938

    Article  Google Scholar 

  • Brun A, Engesgaard P (2002) Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development. J Hydrol 256(3–4):211–227

    Article  CAS  Google Scholar 

  • Brusseau M, Xie L, Li L (1999) Biodegradation during contaminant transport in porous media: 1. Mathematical analysis of controlling factors. J Contam Hydrol 37:269–293

    Article  CAS  Google Scholar 

  • Buchanan W, Roddicka F, Porter N (2008) Removal of VUV pre-treated natural organic matter by biologically activated carbon columns. Water Res 42(13):3335–3342

    Article  PubMed  CAS  Google Scholar 

  • Carrera J, Jubany I, Carvallo L, Chamy R, Lafuente J (2004) Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilised biomass systems. Process Biochem 39(9):1159–1165

    Article  CAS  Google Scholar 

  • Celia MA, Kindred JS (1987) Numerical simulation of subsurface contaminant transport with multiple nutrient biodegradation. In: Proceedings of the international conference on the impact of physiochemistry on the study, design, and optimization of processes in natural porous media, Presses University de Nancy, Nancy, France

  • Champagne P, Parker WJ, Van-Geel P (1999) Modeling cometabolic biodegradation of organic compounds in biofilms. Water Sci Technol 39(7):147–152

    Article  CAS  Google Scholar 

  • Chang M-K, Voice TC, Criddle CS (1993) Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol Bioeng 41:1057–1065

    Google Scholar 

  • Chapelle FH, Lovely DR (1990) Rates of bacterial metabolish in deep coastal plain aquifers. Appl Environ Microbiol 56:1865–1874

    PubMed  CAS  Google Scholar 

  • Chen JM, Hao OJ (1996) Environmental factors and modeling in microbial chromium(VI) reduction. Water Environ Res 68(7):1156

    Article  CAS  Google Scholar 

  • Christ JA, Abriola LM (2007) Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Adv Water Resour 30(6–7):1547–1561

    Google Scholar 

  • Clement TP, Johnson CD, Sun YW, Klecka GM, Bartlett C (2000) Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site. J Contam Hydrol 42(2–4):113–140

    Article  CAS  Google Scholar 

  • Corapcioglu MY, Haridas A (1984) Transport and fate of microorganisms in porous media: a theoretical investigation. J Hydrol 72:149–169

    Article  Google Scholar 

  • Corapcioglu MY, Haridas A (1985) Microbial transport in soils and groundwater: a numerical model. Adv Water Resour 8:188–200

    Article  Google Scholar 

  • Criddle CS (1993) The kinetics of cometabolism. Biotechnol Bioeng 41:1048–1056

    Google Scholar 

  • Curtis GP (2003) Comparison of approaches for simulating reactive solute transport involving organic degradation reactions by multiple terminal electron acceptors. Comput Geosci 29:319–329

    Article  CAS  Google Scholar 

  • Dette H, Melas VB, Pepelyshev A, Strigul N (2003) Efficient design of experiments in the Monod model. J R Stat Soc B 65(3):725–742

    Article  Google Scholar 

  • Edwards VH (1970) The influence of high substrate concentration on microbial kinetics. Biotechnol Bioeng 12:679–712

    Article  PubMed  CAS  Google Scholar 

  • Forrest B, Arnell P (2001) Hydrocarbon delineation and pilot testing program at the Bu Hasa Liquids Recovery Plant Abu Dhabi report, United Arab Emirates. Matrix Solutions Inc. Report 01-47

  • Goudar CT, Strevett KA (2000) Estimating in situ Monod biodegradation parameters using a novel explicit solution of a one-dimensional contaminant transport equation. Ground Water 38:894–898

    Article  CAS  Google Scholar 

  • Grady CPLJ, Daigger GT, Lim HC (1999) Biological wastewater treatment. Marcel Dekker, New York

  • Guha H (2004) Biogeochemical influence on transport of chromium in manganese sediments: experimental and modeling approaches. J Contam Hydrol 70:1–36

    Google Scholar 

  • Hoover D (2007) Process for the biodegradation of hydrocarbons and ethers in subsurface soil by introduction of a solid oxygen source by hydraulic fracturing. United States Patent 7,252,986

  • Iliuta I, Larachi F (2005) Modeling simultaneous biological clogging and physical plugging in trickle-bed bioreactors for wastewater treatment. Chem Eng Sci 60(5):1477–1489

    Article  CAS  Google Scholar 

  • Jackson JV, Edwards VH (1972) Kinetics of substrate inhibition of exponential yeast growth. Biotechnol Bioeng 17:943–964

    Article  Google Scholar 

  • Jia Y, Aagaard P, Breedveld GD (2007) Sorption of triazoles to soil and iron minerals. Chemosphere 67:250–258

    Google Scholar 

  • Johnson R, Pankow J, Bender D, Price C, Zogorski J (2000) Environ Sci Eng 2–9

  • Khan FI, Husain T (2003) Evaluation of a petroleum hydrocarbon contaminated site for natural attenuation using ‘RBMNA’ methodology. Environ Model Softw 18(2):179–194

    Article  Google Scholar 

  • Kim H, Peter RJ, Young LY (2004) Simulating biodegradation of toluene in sand column experiments at the macroscopic and pore-level scale for aerobic and denitrifying conditions. Adv Water Resour 27(4):335–348

    Article  CAS  Google Scholar 

  • Koussis AD, Pesmajogloua S, Syriopoulou D (2003) Modelling biodegradation of hydrocarbons in aquifers: when is the use of the instantaneous reaction approximation justified? J Contam Hydrol 60(3–4):287–305

    Article  PubMed  CAS  Google Scholar 

  • Lai B, Shieh K (1997) Substrate inhibition kinetics in a fluidized bioparticle. Chem Eng J 65:117–121

    Article  CAS  Google Scholar 

  • Långmark J, Storeya MV, Ashboltb NJ, Stenström TA (2004) Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res 38(3):740–748

    Article  PubMed  Google Scholar 

  • Liang C, Chiang P (2007) Mathematical model of the non-steady-state adsorption and biodegradation capacities of BAC filters. J Hazard Mater 139(2):316–322

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Chiang P, Chang E (2007) Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters. Water Res 41(15):3241–3250

    Article  PubMed  CAS  Google Scholar 

  • López-Fiuza J, Buys B, Mosquera-Corral A, Omil F, Méndez R (2002) Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory. Enzyme Microb Technol 31:976–985

    Article  Google Scholar 

  • Luong JHJ (1987) Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng 29:242–248

    Article  PubMed  CAS  Google Scholar 

  • MacQuarrie KTB, Sudicky EA, Frind EO (1990) Simulation of biodegradable organic contaminants in groundwater: 1. Numerical formulation in principal directions. Water Resour Res 26(2):207–222

    CAS  Google Scholar 

  • Mayer KU, Benner SG, Frind EO, Thornton SF, Lerner DN (2001) Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer. J Contam Hydrol 52(3–4):341–368

    Article  Google Scholar 

  • McCuen RH, Surbeck CQ (2008) An alternative to specious linearization of environmental models. Water Res 42(15):4033–4040

    Article  PubMed  CAS  Google Scholar 

  • McNab WW, Dooher BP, Rice DW, Kavanaugh MC, Johnson PC, Cullen SJ, Everett LG, Kastenberg WE (1997) Assessment of appropriate fuel hydrocarbon risk management strategies for George Air Force Base, Victorville, California using a risk based approach. Lawrence Livermore National Laboratory, University of California. UCRL-AR-125619

  • Mohamed M, Hatfield K (2005) Modeling microbial-mediated reduction using the quasi-steady-state approximation. Chemosphere 59:1207–1217

    Google Scholar 

  • Mohamed M, Hatfield K, Hassan AE (2006) Monte Carlo evaluation of microbial-mediated contaminant reactions in heterogeneous aquifers. Adv Water Resour 29:1123–1139

    Article  CAS  Google Scholar 

  • Mohamed M, Hatfield K, Perminova IV (2007) Evaluation of Monod kinetic parameters in the subsurface using moment analysis: theory and numerical testing. Adv Water Resour 30:2034–2050

    Article  Google Scholar 

  • Mohamed M, Saleh N, Sherif M (2010a) Modeling in-situ benzene bioremediation in the contaminated Liwa Aquifer (UAE) using the slow-release oxygen source technique. Environ Earth Sci 61(7):1385–1399

    Google Scholar 

  • Mohamed M, Hatfield K, Hassan AE, Klammler H (2010b) Stochastic evaluation of subsurface contaminant discharges under physical, chemical, and biological heterogeneities. Adv Water Resour 33(7):801–812

    Google Scholar 

  • Mohamed M, Saleh N, Sherif M (2010c) Sensitivity of natural attenuation to variations in kinetic and transport parameters. Bull Environ Contam Toxicol 84(4):443–449

    Google Scholar 

  • Molz FJ, Widdowson MA, Benefield LD (1986) Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media. Water Resour Res 22(8):1207–1216

    Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Murphy EM, Ginn TR (2000) Modeling microbial processes in porous media. Hydrogeol J 8:142–158

    Article  Google Scholar 

  • Murphy EM, Ginn TR, Chilakapati A, Resch CT, Phillips JL, Wietsma TW, Spadoni CM (1997) The influence of physical heterogeneity on microbial degradation and distribution in porous media. Water Resour Res 33(5):1087–1103

    Article  CAS  Google Scholar 

  • Muslu Y (2000) A study on performance characterization of suspended growth systems. Water Air Soil Pollut 124:285–300

    Article  CAS  Google Scholar 

  • Odencrantz JE, Valocchi AJ, Rittmann BE (1990) Modeling two-dimensional solute transport with different biodegradation kinetics. In: Proceedings of the petroleum hydrocarbons and organic chemicals in groundwater: prevention, detection and restoration, National Water Well Association, Houston, TX, pp 355–368

  • Ohtake H, Fuji E, Toda K (1990) Bacterial reduction of hexavalent chromium: kinetic aspects of chromate reduction by Enterobacter cloacae HO1. Biocatalysis 4(2):227

    Article  CAS  Google Scholar 

  • Papagianni M, Boonpooh Y, Matty M, Kristiansen B (2007) Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentrations levels. J Ind Microbiol Biotechnol 34:301–309

    Article  PubMed  CAS  Google Scholar 

  • Phanikumar MS, Hyndman DW (2003) Interactions between sorption and biodegradation: exploring bioavailability and pulsed nutrient injection efficiency. Water Resour Res 39(5):1122. doi:10.1029/2002WR001761

    Article  Google Scholar 

  • Phanikumar MS, Hyndman DW, Wiggert DC, Dybas MJ, Witt ME, Criddle CS (2002) Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently fed aquifer columns. Water Resour Res 38(4):1033. doi:10.1029/2001WR000289

    Article  Google Scholar 

  • Phanikumar MS, Hyndman DW, Zhao X, Dybas MJ (2005) A three-dimensional model of microbial transport and biodegradation at the Schoolcraft, Michigan, site. Water Resour Res 41:5011. doi:10.1029/2004WR003376

    Article  Google Scholar 

  • Prommer H, Barry DA, Davis GB (1998) A one-dimensional reactive multi-component transport model for biodegradation of petroleum hydrocarbons in groundwater. Environ Model Softw 14(2–3):213–223

    Google Scholar 

  • Prommer H, Barry DA, Davis GB (2002) Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. J Contam Hydrol 59(1–2):113–131

    Article  PubMed  CAS  Google Scholar 

  • Rashid M, Kaluarachchi J (1999) A simplified numerical algorithm for oxygen- and nitrate-based biodegradation of hydrocarbons using Monod expressions. J Contam Hydrol 40(1):53–77

    Article  CAS  Google Scholar 

  • Ribes J, Keesman K, Spanjers H (2004) Modeling anaerobic biomass growth kinetics with a substrate threshold concentration. Water Res 38(20):4502–4510

    Article  PubMed  CAS  Google Scholar 

  • Rifai HS, Bedient PB (1990) Comparison of biodegradation kinetics with an instantaneous reaction model for groundwater. Water Resour Res 26:637–645

    CAS  Google Scholar 

  • Rittmann BE, McCarty PL, Roberts PV (1980) Trace-organics biodegradation in aquifer recharge. Ground Water 18:236–243

    Article  CAS  Google Scholar 

  • Saiers JE, Guha H, Jardine PM, Brooks S (2000) Development and evaluation of a mathematical model for the transport and oxidation–reduction of CoEDTA. Water Resour Res 36:3151–3165

    Article  CAS  Google Scholar 

  • Salvage KM, Yeh GT (1997) Development and application of a numerical model of kinetics and equilibrium microbiological and geochemical reactions (BIOKEMOD). J Hydrol 209:27–52

    Article  Google Scholar 

  • Schafer W (2001) Predicting natural attenuation of xylene in groundwater using a numerical model. J Contam Hydrol 52:57–83

    Article  PubMed  CAS  Google Scholar 

  • Schirmer M, Butler BJ, Roy JW, Frind EO, Barker (1999) A relative-least-squares technique to determine unique Monod kinetic parameters of BTEX compounds using batch experiments. J Contam Hydrol 37:69–86

    Article  CAS  Google Scholar 

  • Schirmer M, Molson JW, Frind EO, Barker JF (2000) Biodegradation modeling of a dissolved gasoline plume applying independent laboratory and field parameters. J Contam Hydrol 46(3–4):339–374

    Article  CAS  Google Scholar 

  • Semprini L, Hopkins GD, Roberts PV, Grbic-Galic D, McCarty PL (1991) A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 3. Studies of competitive inhibition. Gr Water 29:239–250

    Google Scholar 

  • Sheintuch M, Tartakovsky B, Narkis N, Rebhun M (1995) Substrate inhibition and multiple states in a continuous nitrification process. Water Res 29:953–963

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1994) Modeling hexavalent chromium reduction in E. coli 33456. Biotechnol Bioeng 43(4):293

    Article  PubMed  CAS  Google Scholar 

  • Simkins S, Alexander M (1984) Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol 47:1299–1306

    PubMed  CAS  Google Scholar 

  • Simpson DR (2008) Biofilm processes in biologically active carbon water purification. Water Res 42(13):2839–2848

    Article  PubMed  CAS  Google Scholar 

  • Sims JL, Sims RC, Matthews JE (1989) Bioremediation of contaminated surface soils. R.S. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency, Ada, UK

  • Smith LH, McCarty PL (1997) Laboratory evaluation of a twostage treatment system for TCE cometabolism by a methaneoxidizing mixed culture. Biotechnol Bioeng 55:650–659

    Google Scholar 

  • Strigula N, Detteb H, Melasc VB (2009) A practical guide for optimal designs of experiments in the Monod model. Environ Model Softw 24(9):1019–1026

    Article  Google Scholar 

  • Surmacz-Gorska J, Gernaey K, Demuynck C, Vanrollehem P, Verstraete W (1996) Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements. Water Res 30:1228–1236

    Article  CAS  Google Scholar 

  • Tanyola A, Tuncel SA (1993) Effectiveness factor for spherically growing mixed culture in substrate inhibition media. Enzyme Microb Technol 15:144–149

    Article  Google Scholar 

  • Tebes-Stevens CL, Valocchi AJ (2000) Calculation of reaction parameter sensitivity coefficients in multicomponent subsurface transport models. Adv Water Resour 23(6):591–611

    Article  Google Scholar 

  • Tomson AFB, Jackson KJ (2000) Reactive transport in heterogeneous systems: an overview. In: Lichtner P et al (eds) Reactive transport in porous media, vol 36. Mineralogical Society of America, Washington, DC, pp 269–310

    Google Scholar 

  • Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Model experiments on the microbial removal of chromium from contaminated groundwater. Water Res 37(6):1401–1405

    Article  PubMed  CAS  Google Scholar 

  • Vavilin VA, Lokshina LY (1996) Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity. Bioresour Technol 57:69–80

    Article  CAS  Google Scholar 

  • Vesper SJ, Murdoch LC, Hayes S, Davis-Hooverb WJ (1994) Solid oxygen source for bioremediation in subsurface soils. J Hazard Mater 36:265–274

    Article  CAS  Google Scholar 

  • Wang Y, Shen H (1997) Modeling Cr(VI) reduction by pure bacterial cultures. Water Resour Res 31(4):727–732

    CAS  Google Scholar 

  • Watson JE, Gardner WR (1986) A mechanistic model of bacterial colony growth response to substrate supply. A paper presented at the Chapman conference on microbial processes in the transport, fate, and in situ treatment of subsurface contaminants, Snowbird, UT

  • Weaver JW, Charbeneau RJ (2000) A screening approach to simulation of aquifer contamination by fuel hydrocarbons (BTEX and MTBE). National Exposure Research Laboratory, United States Environmental Protection Agency, Athens, Georgia, pp 1–47

  • Woodward D (1996) Potential for contamination of the Liwa aquifer by disposal of Brine in the Bu Hassa and Asab Fields, Abu Dhabi

  • Yamamoto K, Kato J, Yano T, Ohtake H (1993) Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae. Biotechnol Bioeng 41(1):129

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Yamamoto K, Yogo S, Murakami Y (2006) An analogue of matrix diffusion enhanced by biogenic redox reaction in fractured sedimentary rock. J Geochem Explor 90(1–2):134–142

    Article  CAS  Google Scholar 

  • Yu J, Molstad L, Frostegård Å, Aagaard P, Breedveld GD, Bakken LR (2007) Kinetics of microbial growth and degradation of organic substrates in subsoil as affected by an inhibitor, benzotriazole: model based analyses of experimental results. Soil Biol Biochem 39(7):1597–1608

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Environmental Remediation Science Program (ERSP), U.S. Department of Energy: (Grant Number DE-FG02-08ER64585) and the Research Affairs at the UAE University (Grant number 08-01-7-11/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, M., Hatfield, K. Dimensionless parameters to summarize the influence of microbial growth and inhibition on the bioremediation of groundwater contaminants. Biodegradation 22, 877–896 (2011). https://doi.org/10.1007/s10532-010-9445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9445-x

Keywords

Navigation