, Volume 22, Issue 2, pp 431–444 | Cite as

Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene

  • Yiran Dong
  • Elizabeth C. Butler
  • R. Paul Philp
  • Lee R. Krumholz
Original Paper


Isotope fractionation has been used with increasing frequency as a tool to quantify degradation of chlorinated aliphatic pollutants in the environment. The objective of this research was to determine if the electron donor present in enrichment cultures prepared from uncontaminated sediments influenced the extent of isotope fractionation of tetrachloroethylene (PCE), either directly, or through its influence on microbial community composition. Two PCE-degrading enrichment cultures were prepared from Duck Pond (DP) sediment and were incubated with formate (DPF) or H2 (DPH) as electron donor. DPF and DPH were significantly different in both product distribution and extent of isotope fractionation. Chemical and isotope analyses indicated that electron donors did not directly affect the product distribution or the extent of isotope fractionation for PCE reductive dechlorination. Instead, restriction fragment length polymorphism (RFLP) and sequence analysis of the 16S rRNA clone libraries of DPF and DPH identified distinct microbial communities in each enrichment culture, suggesting that differences in microbial communities were responsible for distinct product distributions and isotope fractionation between the two cultures. A dominant species identified only in DPH was closely related to known dehalogenating species (Sulfurospirillum multivorans and Sulfurospirillum halorespirans) and may be responsible for PCE degradation in DPH. Our study suggests that different dechlorinators exist at the same site and can be preferentially stimulated by different electron donors, especially over the long-term (i.e., years), typical of in-situ ground water remediation.


Tetrachloroethylene Reductive dechlorination Microbial community composition Isotope fractionation Electron donors 



We thank Tomasz Kuder and Janel McMahon from the School of Geology and Geophysics at the University of Oklahoma (OU) for assistance in isotope analyses. Funding was provided by the OU School of Civil Engineering and Environmental Science and Department of Botany and Microbiology. The OU Graduate College also provided funding through a Robberson Research Grant to Y. D.


  1. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635. doi: 10.1128/JB.186.9.2629-2635.2004 PubMedCrossRefGoogle Scholar
  2. Aeppli C, Berg M, Cirpka OA, Holliger C, Schwarzenbach RP, Hofstetter TB (2009) Influence of mass-transfer limitations on carbon isotope fractionation during microbial dechlorination of trichloroethene. Environ Sci Technol 43:8813–8820. doi: 10.1021/Es901481b PubMedCrossRefGoogle Scholar
  3. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736. doi: 10.1128/AEM.71.12.7724-7736.2005 PubMedCrossRefGoogle Scholar
  4. Ballerstedt H, Hantke J, Bunge M, Werner B, Gerritse J, Andreesen JR, Lechner U (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a dehalococcoides as putative dechlorinating species. FEMS Microbiol Ecol 47:223–234. doi: 10.1016/S0168-6496(03)00282-4 PubMedCrossRefGoogle Scholar
  5. Becker S, Boger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953. doi: 10.1128/AEM.68.9.4486-4494.2002 PubMedCrossRefGoogle Scholar
  6. Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds—a review. Crit Rev Environ Sci Technol 37:165–198. doi: 10.1080/10643380600776130 CrossRefGoogle Scholar
  7. Bloom Y, Aravena R, Hunkeler D, Edwards E, Frape SK (2000) Carbon isotope fractionation during microbial dechlorination of trichloroethene, cis-1,2-dichloroethene, and vinyl chloride: implications for assessment of natural attenuation. Environ Sci Technol 34:2768–2772. doi: 10.1021/es991179k CrossRefGoogle Scholar
  8. Boyle AW, Phelps CD, Young LY (1999) Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2, 4, 6-tribromophenol. Appl Environ Microbiol 65:1133–1140. doi: 10.1099/00207713-46-4-1010 PubMedGoogle Scholar
  9. Bradley PM (2003) History and ecology of chloroethene biodegradation: a review. Bioremediat J 7:81–109. doi: 10.1080/713607980 CrossRefGoogle Scholar
  10. Bruechert V (2004) Physiological and ecological aspects of sulfur isotope fractionation during bacterial sulfate reduction. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry, Special Paper 379. Geological Society of America, BoulderGoogle Scholar
  11. Canale-Perola E (1984) The spirochetes. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, MD, pp 38–79Google Scholar
  12. Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Biosci Bioeng 89:489–491. doi: S1389-1723(00)89102-1[pii] PubMedCrossRefGoogle Scholar
  13. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow H-H, Nijenhuis I (2007) Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum sp. and Desulfitobacterium sp. strain PCE-S. FEMS Microbiol Ecol 62:98–107. doi: 10.1111/j.1574-6941.2007.00367.x PubMedCrossRefGoogle Scholar
  14. Cichocka D, Imfeld G, Richnow H-H, Nijenhuis I (2008) Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Chemosphere 71:639–648. doi: 10.1016/j.chemosphere.2007.11.013 PubMedCrossRefGoogle Scholar
  15. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296. doi: 10.1093/nar/gki038 PubMedCrossRefGoogle Scholar
  16. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345:101–118. doi: 10.1098/rstb.1994.0091 PubMedCrossRefGoogle Scholar
  17. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi: 10.1128/AEM.03006-05 PubMedCrossRefGoogle Scholar
  18. Dong Y, Liang X, Krumholz LR, Philp RP, Butler EC (2009) The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Environ Sci Technol 43. doi: 10.1080/15320380902962346
  19. Drzyzga O, Gerritse J, Dijk JA, Elissen H, Gottschal JC (2001) Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene. Environ Microbiol 3:92–99. doi: 10.1046/j.1462-2920.2001.00157.x PubMedCrossRefGoogle Scholar
  20. Elsner M, Haderlein SB, Kellerhals T, Luzi S, Zwank L, Angst W, Schwarzenbach RP (2004) Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite. Environ Sci Technol 38:2058–2066. doi: 10.1021/es034741m PubMedCrossRefGoogle Scholar
  21. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916. doi: 10.1021/es0504587 PubMedCrossRefGoogle Scholar
  22. Freeborn RA, West KA, Bhupathiraju VK, Chauhan S, Rahm BG, Richardson RE, Alvarez-Cohen L (2005) Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors. Environ Sci Technol 39:8358–8368. doi: 10.1021/es048003p PubMedCrossRefGoogle Scholar
  23. Gu AZ, Hedlund BP, Staley JT, Strand SE, Stensel HD (2004) Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE. Environ Microbiol 6:45–54. doi: 10.1046/j.1462-2920.2003.00525.x PubMedCrossRefGoogle Scholar
  24. He J, Holmes VF, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73:2847–2853. doi: 10.1128/AEM.02574-06 PubMedCrossRefGoogle Scholar
  25. Hirschorn SK, Dinglasan MJ, Elsner M, Mancini SA, Lacrampe-Couloume G, Edwards EA, Lollar BS (2004) Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environ Sci Technol 38:4775–4781PubMedCrossRefGoogle Scholar
  26. Hirschorn SK, Dinglasan-Panlilio MJ, Edwards EA, Lacrampe-Couloume G, Sherwood Lollar B (2007) Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane. Environ Microbiol 9:1651–1657. doi: EMI1282[pii]10.1111/j.1462-2920.2007.01282.x PubMedCrossRefGoogle Scholar
  27. Hoek J, Canfield DE (2007) Controls on isotope fractionation during dissimilatory sulfate reduction. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, New York, pp 273–283Google Scholar
  28. Hoek J, Reysenbach A-L, Habicht KS, Canfield DE (2006) Effect of hydrogen limitation and temperature on the fractionation of sulfur isotopes by a deep-sea hydrothermal vent sulfate-reducing bacterium. Geochim Cosmochim Acta 70:5831–5841. doi: 10.1016/j.gca.2006.07.031 CrossRefGoogle Scholar
  29. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321. doi: 10.1007/s002030050577 PubMedCrossRefGoogle Scholar
  30. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319. doi: 10.1093/bioinformatics/bth226 PubMedCrossRefGoogle Scholar
  31. Hunkeler D, Aravena R, Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ Sci Technol 33:2733–2738. doi: 10.1021/es981282u CrossRefGoogle Scholar
  32. Hunkeler D, Meckenstock RU, Sherwood-Lollar B, Schmidt TC, Wilson JT (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). US Environmental Protection Agency, Ada, OKGoogle Scholar
  33. Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (2002) Manual of environmental microbiology. ASM Press, Washington, DCGoogle Scholar
  34. Kastner M (1991) Reductive dechlorination of tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions. Appl Environ Microbiol 57:2039–2046PubMedGoogle Scholar
  35. Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220. doi: 10.1021/es040420e PubMedCrossRefGoogle Scholar
  36. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, UKGoogle Scholar
  37. Lee PKH, Conrad ME, Alvarez-Cohen L (2007) Stable carbon isotope fractionation of chloroethenes by dehalorespiring Isolates. Environ Sci Technol 41:4277–4285. doi: 10.1021/es062763d PubMedCrossRefGoogle Scholar
  38. Liang X, Dong Y, Kuder T, Krumholz LR, Philp RP, Butler EC (2007) Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation. Environ Sci Technol 41:7094–7100. doi: 10.1021/es070970n PubMedCrossRefGoogle Scholar
  39. Loeffler FE, Ritalahti KM, Tiedje JM (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl Environ Microbiol 63:4982–4985Google Scholar
  40. Loeffler FE, Cole JR, Ritalahti KM, Tiedje JM (2003) Diversity of dechlorinating bacteria. In: Haggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer, Norwell, MA, pp 53–87Google Scholar
  41. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi: 10.1093/nar/gkh293 PubMedCrossRefGoogle Scholar
  42. Luijten MLGC, de Weert J, Smidt H, Boschker HTS, de Vos WM, Schraa G, Stams AJM (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793. doi: 10.1099/ijs.0.02417-0 PubMedCrossRefGoogle Scholar
  43. Madigan MT, Martinko JM, Brock TD (2006) Brock biology of microorganisms. Pearson Prentice Hall, Upper Saddle River, NJGoogle Scholar
  44. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275PubMedGoogle Scholar
  45. Mancini SA, Hirschorn SK, Elsner M, Lacrampe-Couloume G, Sleep BE, Edwards EA, Lollar BS (2006) Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene. Environ Sci Technol 40:7675–7681. doi: 10.1021/es061363n PubMedCrossRefGoogle Scholar
  46. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430CrossRefGoogle Scholar
  47. Morrill PL, Sleep BE, Seepersad DJ, McMaster ML, Hood ED, Le Bron C, Major DW, Edwards EA, Lollar BS (2009) Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone. J Contam Hydrol 110:60–71. doi: 10.1016/j.jconhyd.2009.08.006 PubMedCrossRefGoogle Scholar
  48. Neumann A, Scholz M, Diekert G (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol 162:295–301. doi: 10.1007/BF00301854 PubMedCrossRefGoogle Scholar
  49. Nijenhuis I, Andert J, Beck K, Kaestner M, Diekert G, Richnow H-H (2005) Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and abiotic reactions with cyanocobalamin. Appl Environ Microbiol 71:3413–3419. doi: 10.1128/AEM.71.7.3413-3419.2005 PubMedCrossRefGoogle Scholar
  50. Nijenhuis I, Nikolausz M, Koeth A, Felfoeldi T, Weiss H, Drangmeister J, Grossmann J, Kaestner M, Richnow H-H (2007) Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere 67:300–311. doi: 10.1016/j.chemosphere.2006.09.084 PubMedCrossRefGoogle Scholar
  51. Nikolausz M, Nijenhuis I, Ziller K, Richnow H-H, Kaestner M (2006) Stable carbon isotope fractionation during degradation of dichloromethane by methylotrophic bacteria. Environ Microbiol 8:156–164. doi: 10.1111/j.1462-2920.2005.00878.x PubMedCrossRefGoogle Scholar
  52. Novak PJ, Daniels L, Parkin GF (1998) Rapid dechlorination of carbon tetrachloride and chloroform by extracellular agents in cultures of Methanosarcina thermophila. Environ Sci Technol 32:3132–3136. doi: 10.1021/es971069i CrossRefGoogle Scholar
  53. Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE (2003) Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl Environ Microbiol 69:7467–7479. doi: 10.1128/AEM.69.12.7467-7479.2003 PubMedCrossRefGoogle Scholar
  54. Richardson RE, Bhupathiraju VK, Song DL, Goulet TA, Alvarez-Cohen L (2002) Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652–2662. doi: 10.1021/es0157797 PubMedCrossRefGoogle Scholar
  55. Sangster J (2003) Henry’s Law constants for compounds stable in water. In: Fogg P, Sangster J (eds) Chemicals in the atmosphere: solubility, sources and reactivity. Wiley, EnglandGoogle Scholar
  56. Schmidt KR, Augenstein T, Heidinger M, Ertl S, Tiehm A (2010) Aerobic biodegradation of cis-1,2-dichloroethene as sole carbon source: stable carbon isotope fractionation and growth characteristics. Chemosphere 78:527–532. doi: 10.1016/j.chemosphere.2009.11.033 PubMedCrossRefGoogle Scholar
  57. Sherwood Lollar B, Slater GF, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P (1999) Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: implications for intrinsic bioremediation. Org Geochem 30:813–820. doi: 10.1016/S0146-6380(99)00064-9 CrossRefGoogle Scholar
  58. Sherwood Lollar B, Hirschorn SK, Chartrand MMG, Lacrampe-Couloume G (2007) An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis:  implications for environmental remediation studies. Anal Chem 79:3469–3475CrossRefGoogle Scholar
  59. Slater GF, Lollar BS, Sleep BE, Edwards EA (2001) Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes: implications for field applications. Environ Sci Technol 35:901–907PubMedCrossRefGoogle Scholar
  60. Slater GF, Sherwood Lollar B, Lesage S, Brown S (2003) Carbon isotope fractionation of PCE and TCE during dechlorination by vitamin B12. Ground Water Monit Remediat 23:59–67CrossRefGoogle Scholar
  61. Stasinakis AS, Thomaidis NS, Mamais D, Lekkas TD (2004) Investigation of Cr(VI) reduction in continuous-flow activated sludge systems. Chemosphere 57:1069–1077. doi: 10.1016/j.chemosphere.2004.08.020 PubMedCrossRefGoogle Scholar
  62. Sun B, Cole JR, Sanford RA, Tiedje JM (2000) Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 66:2408–2413PubMedCrossRefGoogle Scholar
  63. Van Breukelen BM, Hunkeler D, Volkering F (2005) Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environ Sci Technol 39:4189–4197. doi: 10.1021/es048973c PubMedCrossRefGoogle Scholar
  64. VanStone N, Przepiora A, Vogan J, Lacrampe-Couloume G, Powers B, Perez E, Mabury S, Sherwood Lollar B (2005) Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis. J Contam Hydrol 78:313–325. doi: 10.1016/j.jconhyd.2005.05.013 PubMedCrossRefGoogle Scholar
  65. Villemur R, Lanthier M, Beaudet R, Lepine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733. doi: 10.1111/j.1574-6976.2006.00029.x PubMedCrossRefGoogle Scholar
  66. Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511. doi: 10.1007/BF00115297 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yiran Dong
    • 1
    • 2
  • Elizabeth C. Butler
    • 2
  • R. Paul Philp
    • 3
  • Lee R. Krumholz
    • 4
  1. 1.Energy and Bioscience InstituteUniversity of Illinois-Urbana ChampaignUrbanaUSA
  2. 2.School of Civil Engineering and Environmental ScienceUniversity of OklahomaNormanUSA
  3. 3.School of Geology and GeophysicsUniversity of OklahomaNormanUSA
  4. 4.Department of Botany and MicrobiologyUniversity of OklahomaNormanUSA

Personalised recommendations