Skip to main content
Log in

Multisubstrate kinetics of PAH mixture biodegradation: analysis in the double-logarithmic plot

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The proposed method of kinetic analysis of aqueous-phase biodegradation of polycyclic aromatic hydrocarbons (PAH) mixture presupposes representation of kinetic curves for each pair of mixture components, S x and S y , in double-logarithmic coordinates (ln S x ; ln S y ). If PAH mixture conversion corresponds to the multisubstrate model with a common active site, then the graphs in double-logarithmic coordinates are straight lines with the angular coefficients equal to the ratio of respective first-order rate constants \( k_{x}^{y} = {\frac{{V_{y} K_{x} }}{{K_{y} V_{x} }}} \), where K x and K y are half-saturation constants, V x and V y are the maximum conversion rates for substrates S x and S y ; the graph slope does not depend on any concentrations and remains constant during the change of reaction rates as a result of inhibition, induction/inactivation of enzymes or biomass growth. The formulated method has been used to analyze PAH mixture conversion by the culture of Sphingomonas sp. VKM B-2434. It has been shown that this process does not satisfy the multisubstrate model with a single active site. The results suggest that the strain VKM B-2434 contains at least two dioxygenases of different substrate specificity: one enzyme converts phenanthrene and fluoranthene and the other converts acenaphthene and acenaphthylene. The ratios of first-order rate constants have been obtained for these pairs of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baboshin MA, Akimov VN, Baskunov BP, Born TL, Khan SU, Golovleva LA (2008) Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation 19:567–576

    Article  CAS  PubMed  Google Scholar 

  • Baughman G, Paris DF (1981) Microbial bioconcentrations of organic pollutants from aquatic systems—a critical review. CRC Crit Rev Microbiol 8:205–228

    Article  CAS  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164

    Article  CAS  PubMed  Google Scholar 

  • Casellas M, Grifoll M, Sebate J, Solanas AM (1998) Isolation and characterization of a fluorenone-degrading bacterial strain and its role in synergistic degradation of fluorene by a consortium. Can J Microbiol 44:734–742

    Article  CAS  Google Scholar 

  • Chevillard C, Cardenas ML, Cornish-Bowden A (1993) The competition plot: a simple test of whether two reactions occur at the same active site. Biochem J 289:599–604

    CAS  PubMed  Google Scholar 

  • Crabtree B, Newsholme EA (1987) A systematic approach to describing and analyzing metabolic control systems. Trends Biochem Sci 12:4–12

    Article  CAS  Google Scholar 

  • Demaneche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jouanneau Y (2004) Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:6714–6725

    Article  CAS  PubMed  Google Scholar 

  • Desai AM, Autenrieth RL, Dimitriou-Christidis P, McDonald TJ (2008) Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation 19:223–233

    Article  CAS  PubMed  Google Scholar 

  • Dimitriou-Christidis P, Autenrieth RL (2007) Kinetics of biodegradation of binary and ternary mixtures of PAHs. Biotech Bioeng 97:788–800

    Article  Google Scholar 

  • Grady CPL Jr, Smets BF, Barbeau DS (1996) Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology. Water Res 30:742–748

    Article  CAS  Google Scholar 

  • Guha S, Peters CA, Jaffé PR (1999) Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures. Biotech Bioeng 65:491–499

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kazunga C, Aitken MD (2000) Products of incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 66:1917–1922

    Article  CAS  PubMed  Google Scholar 

  • Kim S-J, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo J-W, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Knightes CD, Peters CA (2006) Multisubstrate biodegradation kinetics for binary and complex mixtures of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 25:1746–1756

    Article  CAS  PubMed  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841

    Article  CAS  PubMed  Google Scholar 

  • Lotfabad SK, Gray MR (2002) Kinetics of biodegradation mixtures of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 60:361–366

    Article  CAS  PubMed  Google Scholar 

  • Molina M, Araujo R, Hodson RE (1999) Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments. Can J Microbiol 45:520–529

    Article  CAS  PubMed  Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Wiley, New York

    Google Scholar 

  • Seo J-S, Keum Y-S, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  CAS  PubMed  Google Scholar 

  • Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalene and fluorene by phenanthrene-degrading pseudomonads. Appl Environ Microbiol 61:357–362

    CAS  PubMed  Google Scholar 

  • Wammer KH, Peters CA (2005) Polycyclic aromatic hydrocarbon biodegradation rates: a structure-based study. Environ Sci Technol 39:2571–2578

    Article  CAS  PubMed  Google Scholar 

  • Wammer KH, Peters CA (2006) A molecular modeling analysis of polycyclic aromatic hydrocarbon biodegradation by naphthalene dioxygenase. Environ Toxicol Chem 25:912–920

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Baboshin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baboshin, M., Golovleva, L. Multisubstrate kinetics of PAH mixture biodegradation: analysis in the double-logarithmic plot. Biodegradation 22, 13–23 (2011). https://doi.org/10.1007/s10532-010-9370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9370-z

Keywords

Navigation