, Volume 21, Issue 6, pp 889–901 | Cite as

Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions

  • Daliang Ning
  • Hui Wang
  • Chang Ding
  • Huijie Lu
Original Paper


The presence of cytochrome P450 and P450-mediated phenanthrene oxidation in the white rot fungus Phanerochaete chrysosporium under ligninolytic condition was first demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (130 pmol mg−1 in the microsomal fraction) by phenanthrene. The microsomal P450 degraded phenanthrene with a NADPH-dependent activity of 0.44 ± 0.02 min−1. One of major detectable metabolites of phenanthrene in the ligninolytic cultures and microsomal fractions was identified as phenanthrene trans-9,10-dihydrodiol. Piperonyl butoxide, a P450 inhibitor which had no effect on manganese peroxidase activity, significantly inhibited phenanthrene degradation and the trans-9,10-dihydrodiol formation in both intact cultures and microsomal fractions. Furthermore, phenanthrene was also efficiently degraded by the extracellular fraction with high manganese peroxidase activity. These results indicate important roles of both manganese peroxidase and cytochrome P450 in phenanthrene metabolism by ligninolytic P. chrysosporium.


Cytochrome P450 Phanerochaete chrysosporium Polycyclic aromatic hydrocarbon Metabolism 





High performance liquid chromatography


Lignin peroxidase


Low nitrogen


Manganese-dependent peroxidase


Cytochrome P420


Cytochrome P450


Polycyclic aromatic hydrocarbons


Piperonyl butoxide


Potato dextrose agar



This work was supported by National Nature Science Foundation of China (Admission No. 30400012 and 20737001) and Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (Nos. 08Z02ESPCT and 09Y03ESPCT).


  1. Aiken BS, Logan BE (1996) Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media. Biodegradation 7:175–182CrossRefPubMedGoogle Scholar
  2. Bao Z, Yang SK (1991) Liquid chromatographic separation of isomeric phenanthrols on monomeric and polymeric C18 columns. J Chromatogr 536:245–249CrossRefGoogle Scholar
  3. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553PubMedGoogle Scholar
  4. Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501PubMedGoogle Scholar
  5. Black JA, Birge WJ, Westerman AG, Francis PC (1983) Comparative aquatic toxicology of aromatic hydrocarbons. Fundam Appl Toxicol 3:353–358CrossRefPubMedGoogle Scholar
  6. Bohmer S, Messner K, Srebotnik E (1998) Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem Biophys Res Commun 244:233–238CrossRefPubMedGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  8. Brodkorb TS, Legge RL (1992) Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol 58:3117–3121PubMedGoogle Scholar
  9. Bruice PY, Bruice TC, Dansette PM, Selander HG, Yagi H, Jerina DM (1976) Comparison of the mechanisms of solvolysis and rearrangement of K-region vs. non-K-region arene oxides of phenanthrene. Comparative solvolytic rate constants of K-region and non-K-region arene oxides. J Am Chem Soc 98:2965–2973CrossRefGoogle Scholar
  10. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158PubMedGoogle Scholar
  11. Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bioessays 6:166–170CrossRefGoogle Scholar
  12. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436CrossRefPubMedGoogle Scholar
  13. Casillas RP, Crow SA Jr, Heinze TM, Deck J, Cerniglia CE (1996) Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16:205–215CrossRefPubMedGoogle Scholar
  14. Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment, 1st edn. CRC Press, Boca Raton, pp 41–68Google Scholar
  15. Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47:119–124PubMedGoogle Scholar
  16. Cerniglia CE, Campbell WL, Freeman JP, Evans FE (1989) Identification of a novel metabolite in phenanthrene metabolism by the fungus Cunninghamella elegans. Appl Environ Microbiol 536:2275–2279Google Scholar
  17. Colores GM, Ward DM, Inskeep WP (2007) Competitive fitness of isolates enriched on phenanthrene sorbed to model phases. Appl Environ Microbiol 73:4074–4077CrossRefPubMedGoogle Scholar
  18. Daliang N, Hui W, Yuan Z, Dong L (2007) Inducement and degradation function of p450 in Phanerochaete chrysospofium by in situ spectroscopic analysis. Chem J Chin Univ-Chin 28:1469–1474Google Scholar
  19. Dhawale SW, Dhawale SS, Deanross D (1992) Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol 58:3000–3006PubMedGoogle Scholar
  20. Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65:559–565CrossRefPubMedGoogle Scholar
  21. Doddapaneni H, Yadav JS (2005) Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274:454–466CrossRefPubMedGoogle Scholar
  22. Doddapaneni H, Subramanian V, Yadav J (2005) Physiological regulation, xenobiotic induction, and heterologous expression of p450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol 50:292–298CrossRefPubMedGoogle Scholar
  23. Grasselli JG, Ritchey WM (1975) CRC atlas of spectral data and physical constants for organic compounds. CRC Press, ClevelandGoogle Scholar
  24. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952PubMedGoogle Scholar
  25. Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosposium. Appl Environ Microbiol 58:1832–1838PubMedGoogle Scholar
  26. Hiratsuka N, Oyadomari M, Shinohara H, Tanaka H, Wariishi H (2005) Metabolic mechanisms involved in hydroxylation reactions of diphenyl compounds by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biochem Eng J 23:241–246CrossRefGoogle Scholar
  27. Jacob J, Doehmer J, Grimmer G, Soballa V, Raab G, Seidel A, Greim H (1996) Metabolism of phenanthrene, benz[a]anthracene, benzo[a]pyrene, chrysene and benzo[c]phenanthrene by eight cDNA-expressed human and rat cytochromes P450. Polycycl Aromat Compd 10:1–9CrossRefGoogle Scholar
  28. Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V, Gibsonlb DT (1976) Dihydrodiols from anthracene and phenanthrene. J Am Chem Soc 98:5988–5996CrossRefPubMedGoogle Scholar
  29. Korytko PJ, Quimby FW, Scott JG (2000) Metabolism of phenanthrene by house fly CYP6D1 and dog liver cytochrome P450. J Biochem Mol Toxicol 14:20–25CrossRefPubMedGoogle Scholar
  30. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600PubMedGoogle Scholar
  31. Kusk KO (1981) Comparison of the effects of aromatic hydrocarbons on a laboratory alga and natural phytoplankton. Bot Mar 24:611–613CrossRefGoogle Scholar
  32. Luykx DMAM, Prenafeta-Boldu FX, de Bont JAM (2003) Toluene monooxygenase from the fungus Cladosporium sphaerospermum. Biochem Biophys Res Commun 312:373–379CrossRefPubMedGoogle Scholar
  33. Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)pent-4-enoic acid. Microbiology-(UK) 153:2104–2115CrossRefGoogle Scholar
  34. Marston CP, Pereira C, Ferguson J, Fischer K, Hedstrom O, Dashwood W-M, Baird WM (2001) Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH–DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis 22:1077–1086CrossRefPubMedGoogle Scholar
  35. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700CrossRefPubMedGoogle Scholar
  36. Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1996) Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 135:51–55CrossRefPubMedGoogle Scholar
  37. Masaphy S, Krinfeld B, Levanon D (1998) Induction of linoleic acid-supported benzo(a)pyrene hydroxylase activity by manganese in the white rot fungus Pleurotus pulmonarius. Chemosphere 36:2933–2940CrossRefGoogle Scholar
  38. Maspahy S, Lamb DC, Kelly SL (1999) Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochem Biophys Res Commun 266:326–329CrossRefPubMedGoogle Scholar
  39. Mastrangelo G, Fadda E, Marzia V (1996) Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104:1166–1170CrossRefPubMedGoogle Scholar
  40. Moen MA, Hammel KE (1994) Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961PubMedGoogle Scholar
  41. Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. Strain PYR-1. Appl Environ Microbiol 67:1476–1483CrossRefPubMedGoogle Scholar
  42. Morgan P, Lewis ST, Watkinson RJ (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl Microbiol Biotechnol 34:693–696CrossRefGoogle Scholar
  43. Mori T, Kitano S, Kondo R (2003) Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 61:380–383PubMedGoogle Scholar
  44. Mougin C, Pericaud C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 47:51–59CrossRefGoogle Scholar
  45. Mougin C, Laugero C, Asther M, Chaplain V (1997) Biotransformation of s-triazine herbicides and related degradation products in liquid cultures by the white rot fungus Phanerochaete chrysosporium. Pestic Sci 49:169–177CrossRefGoogle Scholar
  46. Niku-Paavola ML, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 254:877–884PubMedGoogle Scholar
  47. Nordqvist M, Thakker DR, Vyas KP, Yagi H, Levin W, Ryan DE, Thomas PE, Conney AH, Jerina DM (1981) Metabolism of chrysene and phenanthrene to bay-region dihydrodiolepoxides by rat liver enzymes. Mol Pharmacol 19:168–178PubMedGoogle Scholar
  48. Omura T (1999) Forty years of cytochrome P450. Biochem Biophys Res Commun 266:690–698CrossRefPubMedGoogle Scholar
  49. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 239:2370–2378PubMedGoogle Scholar
  50. Pangrekar J, Kole PL, Honey SA, Kumar S, Sikka HC (2003) Metabolism of phenanthrene by brown bullhead liver microsomes. Aquat Toxicol 64:407–418CrossRefPubMedGoogle Scholar
  51. Paszczynski A, Crawford RL, Huynh VB (1988) Manganese peroxidase of Phanerochaete chrysosporium: Purification. Methods Enzymol 161:264–270CrossRefGoogle Scholar
  52. Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809PubMedGoogle Scholar
  53. Pipe RK, Moore MN (1986a) An ultrastructural study on the effects of phenanthrene on lysosomal membranes and distribution of the lysosomal enzyme β-glucuronidase in digestive cells of the periwinkle Littorina littorea. Aquat Toxicol 8:65–76CrossRefGoogle Scholar
  54. Pipe RK, Moore MN (1986b) Arylsulphatase activity associated with phenanthrene induced digestive cell deletion in the marine mussel Mytilus edulis. Histochem J 18:557–564CrossRefPubMedGoogle Scholar
  55. Sato R, Omura T (1978) Cytochrome P-450. Kodansha, Tokyo, Academic Press, New YorkGoogle Scholar
  56. Shou M, Korzekwa KR, Gonzalez FJ, Gelboin HV (1994) Stereoselective metabolism of phenanthrene, chrysene and benzo(a)pyrene by cDNA expressed human, rodent and rabbit cytochromes P450. Proceedings of the American Association for Cancer Research Annual Meeting, 35:137Google Scholar
  57. Subramanian V, Yadav JS (2008) Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol 43:205–213CrossRefPubMedGoogle Scholar
  58. Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW, Cerniglia CE (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol 154:260–266CrossRefPubMedGoogle Scholar
  59. Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316PubMedGoogle Scholar
  60. Sutherland JB, Fu PP, Yang SK, Tungeln LSV, Casillas RP, Crow SA, Cerniglia CE (1993) Enantiomeric composition of the trans-dihydrodiols produced from phenanthrene by fungi. Appl Environ Microbiol 59:2145–2149PubMedGoogle Scholar
  61. Tatarko M, Bumpus JA (1994) Biodegradation of phenanthrene by Phanerochaete chrysosporium: on the role of lignin peroxidase. Lett Appl Microbiol 17:20–24CrossRefGoogle Scholar
  62. Teramoto H, Tanaka H, Wariishi H (2004a) Fungal cytochrome P450s catalyzing hydroxylation of substituted toluenes to form their hydroxymethyl derivatives. FEMS Microbiol Lett 234:255–260CrossRefPubMedGoogle Scholar
  63. Teramoto H, Tanaka H, Wariishi H (2004b) Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 66:312–317CrossRefPubMedGoogle Scholar
  64. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249CrossRefGoogle Scholar
  65. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93CrossRefPubMedGoogle Scholar
  66. Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169CrossRefPubMedGoogle Scholar
  67. Zheng ZM, Obbard JP (2002) Removal of surfactant solubilized polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in a rotating biological contactor reactor. J Biotechnol 96:241–249CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.State Key Joint Laboratory on Environment Simulation and Pollution Control, Department of Environmental Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations