Skip to main content
Log in

Optimization and enhancement of soil bioremediation by composting using the experimental design technique

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The objective of this study was the application of the experimental design technique to optimize the conditions for the bioremediation of contaminated soil by means of composting. A low-cost material such as compost from the Organic Fraction of Municipal Solid Waste as amendment and pyrene as model pollutant were used. The effect of three factors was considered: pollutant concentration (0.1–2 g/kg), soil:compost mixing ratio (1:0.5–1:2 w/w) and compost stability measured as respiration index (0.78, 2.69 and 4.52 mg O2 g−1 Organic Matter h−1). Stable compost permitted to achieve an almost complete degradation of pyrene in a short time (10 days). Results indicated that compost stability is a key parameter to optimize PAHs biodegradation. A factor analysis indicated that the optimal conditions for bioremediation after 10, 20 and 30 days of process were (1.4, 0.78, 1:1.4), (1.4, 2.18. 1:1.3) and (1.3, 2.18, 1:1.3) for concentration (g/kg), compost stability (mg O2 g−1 Organic Matter h−1) and soil:compost mixing ratio, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anastasi A, Coppola T, Prigione V, Varese GG (2009) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J Hazard Mater 165:1229–1233

    Article  CAS  PubMed  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2004) Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Crit Rev Environ Sci Technol 34:249–289

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real J, Beck AJ (2006) Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal-tar contaminated soil under in-vessel composting conditions. Environ Pollut 141:459–468

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Cánovas C, Sánchez A (2006) Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass. Waste Manage 26:953–959

    Article  CAS  Google Scholar 

  • Barrena R, d’Imporzano G, Ponsá S, Gea T, Artola A, Vázquez F, Sánchez A, Adani F (2009) In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste. J Hazard Mater 162:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Beaudin N, Caron RF, Legros R, Ramsay J, Lalor L, Ramsay B (1996) Composting of weathered hydrocarbon-contaminated soil. Compost Sci Util 4:37–45

    Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Cayuela ML, Sinicco T, Mondini C (2009) Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. Appl Soil Ecol 41:118–127

    Article  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chang BV, Lu YS, Yuan SY, Tsao TM, Wang MK (2009) Biodegradation of phthalate esters in compost-amended soil. Chemosphere 74:873–877

    Article  CAS  PubMed  Google Scholar 

  • Cookson JT (1995) Bioremediation engineering design and application. McGraw-Hill, New York, USA

    Google Scholar 

  • Delgado-Moreno L, Peña A, Mingorance MD (2009) Design of experiments in environmental chemistry studies: example of the extraction of triazine from soil after olive cake amendment. J Hazard Mater 162:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Deming SN, Morgan SL (1987) Experimental design: a chemometric approach. Data handling in science and technology, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Gourlay C, Tusseau-Vuillemin MH, Garric J, Mouchel JM (2003) Effect of dissolved organic matter of various origins and biodegradability on the bioaccumulation of polycyclic aromatic hydrocarbons in Daphnia magna. Environ Toxicol Chem 22:288–1294

    Google Scholar 

  • Haderlein A, Legros R, Ramsay BA (2006) Pyrene mineralization capacity increased with compost maturity. Biodegradation 17:293–302

    Article  PubMed  Google Scholar 

  • Harrison RM (2001) Pollution: causes, effects and control, 4th edn. The Royal Society of Chemistry, Birmingham

    Google Scholar 

  • Hesnawi RM, McCartney D (2006) Impact of compost amendments and operating temperature on diesel fuel bioremediation. Environ Eng Sci 5:37–45

    Article  CAS  Google Scholar 

  • In BH, Park JS, Namkoong W, Kim JD, Ko BI (2007) Effect of sewage sludge mixing ratio on composting of TNT-contaminated soil. Ind Eng Chem Res 13:190–197

    CAS  Google Scholar 

  • Janzen RA, Xing B, Gomez CC, Salloum MJ, Drijber RA, McGill WB (1996) Compost extract enhances desorption of α-naphtol and naphthalene from pristine and contaminated soil. Soil Biol Biochem 28:1089–1098

    Article  CAS  Google Scholar 

  • Johnson AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  Google Scholar 

  • JØrgensen KS, Puustinen J, Suortti AM (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107:245–254

    Article  PubMed  Google Scholar 

  • Laor Y, Strom PF, Farmer WJ (1999) Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Resour 33:1719–1729

    Article  CAS  Google Scholar 

  • Lee S, Oh B, Kim J (2008) Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity. Bioresour Technol 99:2578–2587

    Article  CAS  PubMed  Google Scholar 

  • Marín JA, Hernández T, García C (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity. Environ Res 98:185–195

    Article  PubMed  Google Scholar 

  • Mihial DJ, Viraraghavan T, Jin Y-C (2006) Bioremediation of petroleum-contaminated soil using composting. Pract Period Hazard Toxic Radioact Waste Manag 10:108–115

    Article  CAS  Google Scholar 

  • Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31

    Article  CAS  PubMed  Google Scholar 

  • Ohura T, Amagai T, Fusaya M, Matsushita H (2004) Polycyclic aromatic hydrocarbons in indoor and outdoor environments and factors affecting their concentrations. Environ Sci Technol 38:77–83

    Article  CAS  PubMed  Google Scholar 

  • Oleszczuk P (2007) Investigation of potentially bioavailable and sequestrated forms of polycyclic aromatic hydrocarbons during sewage sludge composting. Chemosphere 70:288–297

    Article  CAS  PubMed  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanics of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    Article  CAS  Google Scholar 

  • Plaza C, Xing B, Fernández JM, Senesi N, Polo A (2009) Binding of polycyclic aromatic hydrocarbons by humic acids formed during composting. Environ Pollut 157:257–263

    Article  CAS  PubMed  Google Scholar 

  • Ponsá S, Gea T, Alerm L, Cerezo J, Sánchez A (2008) Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manage 28:2735–2742

    Article  Google Scholar 

  • Potter CL, Glaser JA, Hermann R, Dosani MA (1999) Remediation of contaminated east river sediment by composting technology. In: Leeson A, Alleman BC (eds) Bioremediation technologies for polycyclic aromatic hydrocarbon compounds. The fifth international in situ and on-site bioremediation symposium. Battelle Press, Columbus, pp 31–36

    Google Scholar 

  • Quadri G, Chen X, Jawitz JW, Tambone F, Genevini P, Faoro F, Adani F (2008) Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE). Environ Sci Technol 42:2618–2623

    Article  CAS  PubMed  Google Scholar 

  • Rigas F, Dritsa V, Marchan R, Papdopoulou K, Avramids EJ, Hatzianestis I (2005) Biodegradation of lindane by Pleurotus Ostreatus via central composite design. Environ Int 31:191–196

    Article  CAS  PubMed  Google Scholar 

  • Romantschuk M, Sarand I, Petänen T, Peltola R, Jonsson-Vihanne M, Koivula T, Yrjälä K, Haahtela K (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut 107:179–185

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri L, Gea T, Mompeó M, Sayara T, Sánchez A (2008) Performance of different systems for the composting of the source-selected organic fraction of municipal solid waste. Biosyst Eng 101:78–86

    Article  Google Scholar 

  • Ruggieri L, Gea T, Artola A, Sánchez A (2009) Air filled porosity measurements by air pycnometry in the composting process: a review and a correlation analysis. Bioresour Technol 100:2655–2666

    Article  CAS  PubMed  Google Scholar 

  • Said-Pullicino D, Gigliotti G (2007) Oxidative biodegradation of dissolved organic matter during composting. Chemosphere 68:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Sánchez A, Valero F, Lafuente J, Solà C (2000) Highly enantioselective esterification of racemic ibuprofen in a packed bed reactor using immobilized Rhizomucor miehei lipase. Enzyme Microb Technol 27:157–166

    Article  PubMed  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283

    Article  CAS  PubMed  Google Scholar 

  • Senesi N, Plaza C, Brunetti G, Polo A (2007) A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biol Biochem 39:1244–1262

    Article  CAS  Google Scholar 

  • Serrano Silva I, dos Santos E, de Menezes CR, Fonseca de Faria A, Franciscon E, Grossman M, Durrant LR (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675

    Article  Google Scholar 

  • Tejada M, González JL, Hernández MT, García C (2008) Application of different organic amendments in a gasoline contaminated soil: effect on soil microbial properties. Bioresour Technol 99:2872–2880

    Article  CAS  PubMed  Google Scholar 

  • The US Department of Agriculture, The US Composting Council (2001) Test methods for the examination of composting and compost. Edaphos International, Houston

    Google Scholar 

  • Thomas JM, Ward CH, Raymond RL, Wilson JT, Loehr RC (1992) Bioremediation. Encyclopaedia of microbiology. Academic Press, San Diego

    Google Scholar 

  • Vieira P, Faria S, Vieira R, França F, Cardoso V (2009) Statistical analysis and optimization of nitrogen, phosphorus, and inoculum concentrations for the biodegradation of petroleum hydrocarbons by response surface methodology. World J Microbiol Biotechnol 25:427–438

    Article  CAS  Google Scholar 

  • Wan CK, Wong JWC, Fang M, Ye DY (2003) Effect of organic waste amendments on degradation of PAHs in soil using thermophilic composting. Environ Technol 24:23–30

    Article  CAS  PubMed  Google Scholar 

  • Wilson SC, Jones KJ (1993) Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Spanish Ministerio de Educación y Ciencia (Project CTM2006-00315/TECNO). T. Sayara thanks Agencia Española de Cooperación Internacional para el Desarrollo (AECID) for a pre-doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayara, T., Sarrà, M. & Sánchez, A. Optimization and enhancement of soil bioremediation by composting using the experimental design technique. Biodegradation 21, 345–356 (2010). https://doi.org/10.1007/s10532-009-9305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9305-8

Keywords

Navigation