, 20:813 | Cite as

Efficacy of bacterial consortium-AIE2 for contemporaneous Cr(VI) and azo dye bioremediation in batch and continuous bioreactor systems, monitoring steady-state bacterial dynamics using qPCR assays

  • Chirayu Desai
  • Kunal Jain
  • Bharat Patel
  • Datta Madamwar
Original Paper


Bacterial consortium-AIE2 with a capability of contemporaneous Cr(VI) reduction and azo dye RV5 decolourization was developed from industrial wastewaters by enrichment culture technique. The 16S rRNA gene based molecular analyses revealed that the consortium bacterial community structure consisted of four bacterial strains namely, Alcaligenes sp. DMA, Bacillus sp. DMB, Stenotrophomonas sp. DMS and Enterococcus sp. DME. Cumulative mechanism of Cr(VI) reduction by the consortium was determined using in vitro Cr(VI) reduction assays. Similarly, the complete degradation of Reactive Violet 5 (RV5) dye was confirmed by FTIR spectroscopic analysis. Consortium-AIE2 exhibited simultaneous bioremediation efficiencies of (97.8 ± 1.4) % and (74.1 ± 1.2) % in treatment of both 50 mg l−1 Cr(VI) and RV5 dye concentrations within 48 h of incubation at pH 7 and 37°C in batch systems. Continuous bioreactor systems achieved simultaneous bioremediation efficiencies of (98.4 ± 1.5) % and (97.5 ± 1.4) % after the onset of steady-state at 50 mg l−1 input Cr(VI) and 25 mg l−1 input RV5 concentrations, respectively, at medium dilution rate (D) of 0.014 h−1. The 16S rRNA gene copy numbers in the continuous bioreactor as determined by real-time PCR assay indicated that Alcaligenes sp. DMA and Bacillus sp. DMB dominated consortium bacterial community during the active continuous bioremediation process.


Bacterial consortium Biodegradation Azo dye Cr(VI) Real-time PCR FTIR 



We are thankful to Department of Biotechnology, Ministry of Science and Technology, India for providing financial grants. We thank Dr. C. J. Joshi, AAU, Gujarat, India for kindly extending technical help and facilities for Real Time-PCR analysis. Endeavour-India Research Fellowship awarded to Dr. Desai by the Australian Government Department of Education Science and Training (DEST) is gratefully acknowledged.


  1. An HR, Mainelis G, White L (2006) Development and calibration of real-time PCR for quantification of airborne micro-organisms in air samples. Atmos Environ 40:7924–7939. doi: 10.1016/j.atmosenv.2006.07.020 CrossRefGoogle Scholar
  2. Asgher M, Bhatti HN, Shah SAH, Asad MJ, Legge RL (2007) Decolourization potential of mixed microbial consortia for reactive and disperse textile dyestuffs. Biodegradation 18:311–316. doi: 10.1007/s10532-006-9065-7 PubMedCrossRefGoogle Scholar
  3. Blanquez P, Sarrà M, Vicent T (2008) Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Process Biochem 43:1–7. doi: 10.1016/j.procbio.2007.10.002 CrossRefGoogle Scholar
  4. Cabrera G, Viera M, Gomez JM, Cantero D, Donati E (2007) Bacterial removal of chromium (VI) and (III) in a continuous system. Biodegradation 18:505–513. doi: 10.1007/s10532-006-9083-5 PubMedCrossRefGoogle Scholar
  5. Cervantes C, Campos-Garcia J, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347. doi: 10.1111/j.1574-6976.2001.tb00581.x PubMedCrossRefGoogle Scholar
  6. Cetin D, Donmez S, Donmez G (2008) The treatment of textile wastewater including chromium(VI) and reactive dye by sulphate-reducing bacterial enrichment. J Environ Manage 88:76–82. doi: 10.1016/j.jenvman.2007.01.019 PubMedCrossRefGoogle Scholar
  7. Chen H, Wang RF, Cerniglia CE (2004) Molecular cloning, over expression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310. doi: 10.1016/j.pep.2003.12.016 PubMedCrossRefGoogle Scholar
  8. Da Silva MLB, Alvarez PJJ (2007) Assessment of anaerobic benzene degradation potential using 16S rRNA gene-targeted real-time PCR. Environ Microbiol 9:72–80. doi: 10.1111/j.1462-2920.2005.01116.x PubMedCrossRefGoogle Scholar
  9. Dawkar VV, Jadhav UU, Jadhav SU, Govindwar SP (2008) Biodegradation of disperse textile dye Brown 3REL by newly isoalted Bacillus sp. VUS. J Appl Microbiol 105:14–24. doi: 10.1111/j.1365-2672.2008.03738.x PubMedCrossRefGoogle Scholar
  10. Desai C, Madamwar D (2007) Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments. Bioresour Technol 98:761–768. doi: 10.1016/j.biortech.2006.04.004 PubMedCrossRefGoogle Scholar
  11. Desai C, Jain K, Madamwar D (2008a) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–721. doi: 10.1016/j.procbio.2008.02.015 CrossRefGoogle Scholar
  12. Desai C, Jain K, Madamwar D (2008b) Evaluation of In vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour Technol 99:6059–6069. doi: 10.1016/j.biortech.2007.12.046 PubMedCrossRefGoogle Scholar
  13. Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160:1–9. doi: 10.1016/j.resmic.2008.10.003 PubMedCrossRefGoogle Scholar
  14. Fude L, Harris B, Urrutia MM, Beveridge TJ (1994) Reduction of Cr(VI) by a Consortium of Sulfate-Reducing Bacteria (SRB III). Appl Environ Microbiol 60:1525–1531PubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98, NT. Nucleic Acids Symp Ser 48:95–98Google Scholar
  16. Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400. doi: 10.1016/j.chemosphere.2006.12.087 PubMedCrossRefGoogle Scholar
  17. Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641. doi: 10.1016/j.biortech.2007.06.058 PubMedCrossRefGoogle Scholar
  18. Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163(2–3):735–742. doi: 10.1016/j.jhazmat.2008.07.020 PubMedCrossRefGoogle Scholar
  19. Kamaludeen SPB, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003) Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol 178:93–164. doi: 10.1007/0-387-21728-2_4 PubMedCrossRefGoogle Scholar
  20. Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS (2005) Decolorization of various azo dyes by bacterial consortium. Dyes Pigments 67:55–61. doi: 10.1016/j.dyepig.2004.10.008 CrossRefGoogle Scholar
  21. Kilic NK, Nielsen JL, Yuce M, Donmez G (2007) Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere 67:826–831. doi: 10.1016/j.chemosphere.2006.08.041 PubMedCrossRefGoogle Scholar
  22. Kindaichi T, Kawano Y, Ito T, Satoh H, Okabe S (2006) Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnol Bioeng 94:1112–1121. doi: 10.1002/bit.20926 CrossRefGoogle Scholar
  23. Mohana S, Srivastava S, Divecha J, Madamwar D (2008) Response surface methodology for optimization of medium for decolorization of textile dye direct black 22 by novel bacterial consortium. Bioresour Technol 99:562–569. doi: 10.1016/j.biortech.2006.12.033 PubMedCrossRefGoogle Scholar
  24. Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microb Biot 21:667–672. doi: 10.1007/s11274-004-3612-3 CrossRefGoogle Scholar
  25. Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigments 74:723–729. doi: 10.1016/j.dyepig.2006.05.005 CrossRefGoogle Scholar
  26. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegradation 59:73–84. doi: 10.1016/j.ibiod.2006.08.006 CrossRefGoogle Scholar
  27. Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458PubMedGoogle Scholar
  28. Pourbabaee AA, Malekzadeh F, Sarbolouki MN, Najafi F (2006) Aerobic decolorization and detoxification of a disperse dye in textile effluent by a new isolate of Bacillus sp. Biotechnol Bioeng 93:631–635. doi: 10.1002/bit.20732 PubMedCrossRefGoogle Scholar
  29. Sadettin S, Donmez G (2007) Simultaneous bioaccumulation of reactive dye and chromium (VI) by using thermophil Phormidium sp. Enzyme Microb Technol 41:175–180. doi: 10.1016/j.enzmictec.2006.12.015 CrossRefGoogle Scholar
  30. Sen M, Dastidar MG, Roychoudhury PK (2007) Biological removal of Cr(VI) using Fusarium solani in batch and continuous modes of operation. Enzyme Microb Technol 41:51–56. doi: 10.1016/j.enzmictec.2006.11.021 CrossRefGoogle Scholar
  31. Shen H, Pritchard PH, Sewell GW (1996) Kinetics of chromate reduction during naphthalene degradation in a mixed culture. Biotechnol Bioeng 52:357–363. doi: 10.1002/(SICI)1097-0290(19961105)52:3<357::AID-BIT1>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  32. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80. doi: 10.1007/s002530100686 PubMedCrossRefGoogle Scholar
  33. Suzuki Y, Yoda T, Ruhul A, Sugiura W (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1–2 isolated from soil. J Biol Chem 276:9059–9065. doi: 10.1074/jbc.M008083200 PubMedCrossRefGoogle Scholar
  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  35. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  36. Woo TH, Patel BK, Cinco M, Smythe LD, Norris MA, Symonds ML, Dohnt MF, Piispanen J (1999) Identification of Leptospira biflexa by real-time homogeneous detection of rapid cycle PCR product. J Microbiol Methods 35:23–30. doi: 10.1016/S0167-7012(98)00095-5 PubMedCrossRefGoogle Scholar
  37. Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433. doi: 10.1002/bit.20724 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Chirayu Desai
    • 1
  • Kunal Jain
    • 1
  • Bharat Patel
    • 2
  • Datta Madamwar
    • 1
  1. 1.Microbiology Research Division, BRD School of BiosciencesSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.School of Biomolecular and Physical SciencesGriffith UniversityBrisbaneAustralia

Personalised recommendations