, Volume 20, Issue 5, pp 679–686 | Cite as

The most-probable-number enumeration of dichlobenil and 2,6-dichlorobenzamide (BAM) degrading microbes in Finnish aquifers

  • Veera Pukkila
  • Juhani Gustafsson
  • Jari Tuominen
  • Anri Aallonen
  • Merja H. Kontro
Original Paper


In groundwater subsurface deposits and a topsoil from five aquifers having 2,6-dichlorobenzamide (BAM) in water, we determined the most-probable-number (MPN) of 2,6-dichlorobenzonitrile (dichlobenil) and metabolite BAM degrading microorganisms. Dichlobenil and BAM were combined nitrogen sources in the MPN tubes, which were scored positive at concentrations <75% after 1 month incubation. Aerobic and anaerobic microbes degrading dichlobenil and BAM were common in samples in low numbers of 3.6–210 MPN g dw−1. Additional degradation occurred in high MPN dilutions of some samples, the microbial numbers being 0.11–120 × 105 MPN g dw−1. The strains were isolated from low and high dilutions of one deposit, and degradation in pure cultures was confirmed by HPLC. According to the 16S rDNA sequencing, strains were from genera Zoogloea, Pseudomonas, Xanthomonas, Rhodococcus, Nocardioides, Sphingomonas, and Ralstonia. Dichlobenil (45.5 ± 18.3%) and BAM (37.6 ± 14%) degradation was low in the MPN tubes. Despite of microbial BAM degradation activity in subsurface deposits, BAM was measured from groundwater.


2,6-Dichlorobenzonitrile 2,6-Dichlorobenzamide Most-probable-number enumeration Biotic degradation Groundwater environment Topsoil 



This work was supported by the Maj and Tor Nessling Foundation, the Ministry of Agriculture and Forestry in Finland, the Finnish Cultural Foundation, Maa- ja vesitekniikan tuki ry, Lahti Aqua Ltd, and the Onni and Hilja Tuovinen Foundation.


  1. Albrechtsen H-J, Mills MS, Aamand J et al (2001) Degradation of herbicides in shallow Danish aquifers: an integrated laboratory and field study. Pest Manag Sci 57:341–350. doi: 10.1002/ps.305 PubMedCrossRefGoogle Scholar
  2. Alvey S, Crowley DE (1996) Survival and activity of an atrazine-mineralizing bacterial consortium in rhizosphere soil. Environ Sci Technol 30:1596–1603. doi: 10.1021/es950575+ CrossRefGoogle Scholar
  3. Beynon KI, Wright AN (1968) Persistence, penetration, and breakdown of chlorthiamid and dichlobenil herbicides in field soils of different types. J Sci Food Agric 19:718–722. doi: 10.1002/jsfa.2740191208 CrossRefGoogle Scholar
  4. Beynon KI, Wright AN (1972) The fates of the herbicides chlorthiamid and dichlobenil in relation to residues in crops, soils, and animals. Residue Rev 43:23–53Google Scholar
  5. Broholm MM, Rügge K, Tuxen N et al (2001) Fate of herbicides in a shallow aerobic aquifer: a continuous field injection experiment (Vejen, Denmark). Water Resour Res 37:3163–3176. doi: 10.1029/2000WR000002 CrossRefGoogle Scholar
  6. Brüsch W (2004) Pesticides and metabolites. In: Jørgensen LF (ed) Groundwater monitoring 2003. Geological Survey of Denmark and Greenland, Copenhagen, Denmark, pp 33–40 (in Danish)Google Scholar
  7. Clausen L, Larsen F, Albrechtsen H-J (2004) Sorption of the herbicide dichlobenil and the metabolite 2, 6-dichlorobenzamide on soils and aquifer sediments. Environ Sci Technol 38:4510–4518. doi: 10.1021/es035263i PubMedCrossRefGoogle Scholar
  8. Clausen L, Arildskov NP, Larsen F et al (2007) Degradation of the herbicide dichlobenil and its metabolite BAM in soils and subsurface sediments. J Contam Hydrol 89:157–173. doi: 10.1016/j.jconhyd.2006.04.004 PubMedCrossRefGoogle Scholar
  9. de Man JC (1983) MPN tables, corrected. Eur J Appl Microbiol Biotechnol 17:301–305. doi: 10.1007/BF00508025 CrossRefGoogle Scholar
  10. Edwards U, Rogall T, Blöcker H et al (1989) Isolation and direct complete nucleotide determination of entire genes Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. doi: 10.1093/nar/17.19.7843 PubMedCrossRefGoogle Scholar
  11. Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72. doi: 10.1111/j.1574-6968.1992.tb05823.x CrossRefGoogle Scholar
  12. Heinonen-Tanski H (1981) The interaction of microorganisms and the herbicides chlorthiamid and dichlobenil. J Sci Agr Soc Finl 53:341–390Google Scholar
  13. Holtze MS, Sørensen J, Hansen HCB et al (2006) Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase and nitrilase. Biodegradation 17:503–510. doi: 10.1007/s10532-005-9021-y PubMedCrossRefGoogle Scholar
  14. Holtze MS, Hansen HCB, Juhler RK et al (2007a) Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure. Environ Pollut 148:343–351. doi: 10.1016/j.envpol.2006.10.028 PubMedCrossRefGoogle Scholar
  15. Holtze MS, Sørensen SR, Sørensen J et al (2007b) Biostimulation and enrichment of 2, 6-dichlorobenzamide-mineralising soil bacterial communities from dichlobenil-exposed soil. Soil Biol Biochem 39:216–223. doi: 10.1016/j.soilbio.2006.07.009 CrossRefGoogle Scholar
  16. ISO 11885. Finnish Standards Association SFS Water quality (1996) Determination of 33 elements by inductively coupled plasma atomic emission spectroscopy. Finnish Standards Association, Helsinki, FinlandGoogle Scholar
  17. ISO/CD 22036. International Standard Organisation. Soil quality (2005) Determination of trace elements in extracts of soil by inductively coupled plasma atomic emission spectrometry (ICP AES)Google Scholar
  18. Koopman H, Daams J (1960) 2,6-Dichlorobenzonitrile: a new herbicide. Nature 186:89–90. doi: 10.1038/186089a0 PubMedCrossRefGoogle Scholar
  19. Miyazaki S, Sikka HC, Lynch RS (1975) Metabolism of dichlobenil by microorganisms in the aquatic environment. J Agric Food Chem 23:365–368. doi: 10.1021/jf60199a026 PubMedCrossRefGoogle Scholar
  20. Montgomery M, Yu TC, Freed VH (1972) Kinetics of dichlobenil degradation in soil. Weed Res 12:31–36. doi: 10.1111/j.1365-3180.1972.tb01184.x CrossRefGoogle Scholar
  21. Ostrofsky EB, Robinson JB, Traina SJ et al (2002) Analysis of atrazine-degrading microbial communities in soils using most-probable-number enumeration, DNA hybridization, and inhibitors. Soil Biol Biochem 34:449–1459. doi: 10.1016/S0038-0717(02)00089-5 CrossRefGoogle Scholar
  22. Porazzi E, Pardo Martinez M, Fanelli R et al (2005) GC-MS analysis of dichlobenil and its metabolites in groundwater. Talanta 68:146–154. doi: 10.1016/j.talanta.2005.04.044 PubMedCrossRefGoogle Scholar
  23. SFS 5505. Finnish Standards Association SFS (1988) Determination of inorganic and organic nitrogen in waste water. Modified Kjeldahl method. Finnish Standards Association. Helsinki, Finland [in Finnish]Google Scholar
  24. SFS-EN ISO 10304-1. Finnish Standards Association SFS. Water quality (1995) Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulphate ions, using liquid chromatography of ions. Part 1: Method for water with low contamination. Finnish Standards Association. Helsinki, FinlandGoogle Scholar
  25. SFS-EN ISO 10304-2. Finnish Standards Association SFS. Water quality (1997) Determination of dissolved anions by liquid chromatography of ions. Part 2: Determination of bromide, chloride, nitrate, nitrite, orthophosphate and sulphate in waste water. Finnish Standards Association. Helsinki, FinlandGoogle Scholar
  26. SFS-EN 13039. Finnish Standards Association SFS (2000) Soil improvers and growing media. Determination of organic matter content and ash. Finnish Standards Association. Helsinki, FinlandGoogle Scholar
  27. SFS-EN 13040. Finnish Standards Association SFS (2000) Soil improvers and growing media. Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density. Finnish Standards Association. Helsinki, FinlandGoogle Scholar
  28. SFS-EN ISO/IEC 17025. Finnish Standards Association SFS (2005) General requirements for the competence of testing and calibration laboratories. Finnish Standards Association. Helsinki, FinlandGoogle Scholar
  29. Simonsen A, Holtze MS, Sørensen SR et al (2006) Mineralisation of 2, 6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp. Environ Pollut 144:289–295. doi: 10.1016/j.envpol.2005.11.047 PubMedCrossRefGoogle Scholar
  30. Sørensen SR, Holtze MS, Simonsen A et al (2007) Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2, 6-dichlorobenzamide by Aminobacter spp isolated from dichlobenil-treated soils. Appl Environ Microbiol 73:399–406. doi: 10.1128/AEM.01498-06 PubMedCrossRefGoogle Scholar
  31. Tuxen N, Tüchsen PL, Rügge K et al (2000) Fate of seven pesticides in an aerobic aquifer studied in column experiments. Chemosphere 41:1485–1494. doi: 10.1016/S0045-6535(99)00533-0 PubMedCrossRefGoogle Scholar
  32. Tuxen N, de Lipthay JR, Albrechtsen H-J et al (2002) Effect of exposure history on microbial herbicide degradation in an aerobic aquifer affected by a point source. Environ Sci Technol 36:2205–2212. doi: 10.1021/es0113549 PubMedCrossRefGoogle Scholar
  33. Verloop A (1972) Fate of the herbicide dichlobenil in plants and soil in relation to its biological activity. Residue Rev 43:55–103Google Scholar
  34. Verloop A, Nimmo WB (1970) Metabolism of dichlobenil in sandy soil. Weed Res 10:65–70. doi: 10.1111/j.1365-3180.1970.tb00924.x CrossRefGoogle Scholar
  35. Vosáhlová J, Pavlù L, Vosáhlo J et al (1997) Degradation of bromoxynil, ioxynil, dichlobenil and their mixtures by Agrobacterium radiobacter 8/4. Pestic Sci 49:303–306. doi: 10.1002/(SICI)1096-9063(199703)49:3<303::AID-PS519>3.0.CO;2-T CrossRefGoogle Scholar
  36. Wolter R, Rosenbaum S, Hannappel S (2001) The German groundwater monitoring network. Proc Monit Taylor Made III, 277–282., 3.10.2008

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Veera Pukkila
    • 1
  • Juhani Gustafsson
    • 2
  • Jari Tuominen
    • 3
  • Anri Aallonen
    • 3
  • Merja H. Kontro
    • 1
  1. 1.Department of Ecological and Environmental SciencesUniversity of HelsinkiLahtiFinland
  2. 2.Finnish Environment InstituteHelsinkiFinland
  3. 3.Ramboll Analytics Ltd.LahtiFinland

Personalised recommendations