Skip to main content
Log in

Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Fast development of ionic liquids as gaining more and more attention valuable chemicals will undoubtedly lead to environmental pollution. New formulations and application of ionic liquids may result in contamination in the presence of hydrophobic compounds, such as petroleum mixtures. We hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C3 to C18) on biodegradation of diesel fuel by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C8–C18) caused a decrease in diesel fuel biodegradation. As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C3 and C18 homologues, respectively. We conclude that in the presence of hydrocarbons acting as a solvent, the increased bioavailability of hydrophobic homologues is responsible for the decrease in biodegradation efficiency of diesel fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arning J, Stolte S, Böschen A, Stock F, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J (2008) Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem 10:47–58. doi:10.1039/b712109a

    Article  CAS  Google Scholar 

  • Belvèze LS (2004) Modeling and measurements of thermodynamic properties of ionic liquids. MSc thesis, University of Notre Dame, Notre Dame, IN

  • Bernot RJ, Kennedy EE, Lamberti GA (2005) Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem 24:1759–1765. doi:10.1897/04-614R.1

    Article  PubMed  CAS  Google Scholar 

  • Bösmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid W (2001) Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun (Camb) 7:2494–2495. doi:10.1039/b108411a

    Article  Google Scholar 

  • Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428. doi:10.1046/j.1365-2672.1999.00678.x

    Article  PubMed  Google Scholar 

  • Chrzanowski Ł, Owsianiak M, Wyrwas B, Aurich A, Szulc A, Olszanowski A (2009) Adsorption of sodium dodecyl benzene sulphonate (SDBS) on Candida maltosa EH 15 strain: influence on cell surface hydrophobicity and n-alkanes biodegradation. Water Air Soil Pollut 196:345–353. doi:10.1007/s11270-008-9782-0

    Article  CAS  Google Scholar 

  • Cieniecka-Rosłonkiewicz A, Pernak J, Kubis-Feder J, Ramani A, Robertson AJ, Seddon KR (2005) Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem 7:855–862. doi:10.1039/b508499g

    Article  Google Scholar 

  • Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure—property relationship modeling. Green Chem 8:82–90. doi:10.1039/b511333d

    Article  CAS  Google Scholar 

  • Cross J (1994) Introduction to cationic surfactants. In: Cross J, Singer EJ (eds) Cationic surfactants, analytical and biological evaluation, surfactant science series, vol 53. Marcel Dekker, NY, Chapter 1

    Google Scholar 

  • Docherty KM, Kulpa CF Jr (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189. doi:10.1039/b419172b

    Article  CAS  Google Scholar 

  • Docherty KM, Dixon JK, Kulpa CF Jr (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18:481–493. doi:10.1007/s10532-006-9081-7

    Article  PubMed  CAS  Google Scholar 

  • Endo S, Schmidt T (2006) Prediction of partitioning between complex organic mixtures and water: application of polyparameter linear free energy relationships. Environ Sci Technol 40:536–545. doi:10.1021/es0515811

    Article  PubMed  CAS  Google Scholar 

  • Fan H, Li Z, Liang T (2007) Experimental study on using ionic liquids to upgrade heavy oil. J Fuel Chem Technol 35:32–35

    Article  CAS  Google Scholar 

  • Gao H, Luo M, Xing J, Wu Y, Li Y, Li W, Liu Q, Liu H (2008) Desulfurization of fuel by extraction with pyridinium-based ionic liquids. Ind Eng Chem Res 47:8384–8388. doi:10.1021/ie800739w

    Article  CAS  Google Scholar 

  • García MT, Ribosa I, Guindulain T, Sánchez-Leal J, Vives-Rego J (2001) Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ Pollut 111:169–175. doi:10.1016/S0269-7491(99)00322-X

    Article  PubMed  Google Scholar 

  • García MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem 7:9–14. doi:10.1039/b411922c

    Article  Google Scholar 

  • Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A 222:101–117. doi:10.1016/S0926-860X(01)00834-1

    Article  CAS  Google Scholar 

  • Hansch C, Leo A (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  • Hartmans S, de Bont JAM, Harder W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Lett 63:235–264. doi:10.1111/j.1574-6968.1989.tb03399.x

    Article  CAS  Google Scholar 

  • Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomeration of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051. doi:10.1016/0045-6535(95)00015-Z

    Article  CAS  Google Scholar 

  • Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238. doi:10.1007/s007920050065

    Article  PubMed  CAS  Google Scholar 

  • ISO 2871-2:1990 (1990) Surface active agents—detergents—determination of cationic-active matter content—part 2: cationic-active matter of low molecular mass (between 200 and 500)

  • Ito H, Hosokawa R, Morikawa M, Okuyama H (2008) A turbine oil-degrading bacterial consortium from soils of oil fields and its characteristics. Int Biodeter Biodegr 61:223–232. doi:10.1016/j.ibiod.2007.08.001

    Article  CAS  Google Scholar 

  • Jastorff B, Mölter K, Behrend P, Bottin-Weber U, Filser J, Heimers A, Ondruschka B, Ranke J, Schaefer M, Schröder H, Stark A, Stepnowski P, Stock F, Störmann R, Stolte S, Welz-Biermann U, Ziegert S, Thöming J (2005) Progress in evaluation of risk potential of ionic liquids-basis for an eco-design of sustainable products. Green Chem 7:362–372. doi:10.1039/b418518h

    Article  CAS  Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41:267–273. doi:10.1007/BF00186971

    Article  Google Scholar 

  • Kralisch D, Stark A, Körsten S, Kreisel G, Ondruschka B (2005) Energetic, environmental and economic balances: spice up your ionic liquid research efficiency. Green Chem 7:301–309. doi:10.1039/b417167e

    Article  CAS  Google Scholar 

  • Liu D, Gui J, Song L, Zhang X, Sun Z (2008) Deep desulfurization of diesel fuel by extraction with task-specific ionic liquids. Petrol Sci Tech 26:973–982. doi:10.1080/10916460600695496

    Article  CAS  Google Scholar 

  • Maila MP, Randima P, Drønen K, Cloete TE (2006) Soil microbial communities: influence of geographic location and hydrocarbon pollutants. Soil Biol Biochem 38:303–310

    CAS  Google Scholar 

  • Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207. doi:10.1039/b705795d

    Article  CAS  Google Scholar 

  • Matzke M, Thiele K, Müller A, Filser J (2009) Sorption and desorption of imidazolium based ionic liquids in different soil types. Chemosphere 74:568–574. doi:10.1016/j.chemosphere.2008.09.049

    Article  PubMed  CAS  Google Scholar 

  • Meylan WM, Howard PH (1995) Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci 84:83–92. doi:10.1002/jps.2600840120

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki Y, Sugawara K (2008) Removal of organic sulfur from hydrocarbon resources using ionic liquids. Energy Fuels 22:3303–3307. doi:10.1021/ef800400k

    Article  CAS  Google Scholar 

  • Modelli A, Sali A, Galletti P, Samorì C (2008) Biodegradation of oxygenated and non-oxygenated imidazolium-based ionic liquids in soil. Chemosphere 73:1322–1327. doi:10.1016/j.chemosphere.2008.07.012

    Article  PubMed  CAS  Google Scholar 

  • Olivier-Bourbigou H, Magna L (2002) Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A 182:419–437. doi:10.1016/S1381-1169(01)00465-4

    Article  Google Scholar 

  • Pernak J, Branicka M (2003) The properties of 1-alkoxymethyl-3-hydroxypyridinium and 1-alkoxymethyl-3-dimethylaminopyridinium chlorides. J Surfactants Deterg 6:119–123. doi:10.1007/s11743-003-0254-5

    Article  CAS  Google Scholar 

  • Pernak J, Branicka M (2004) Synthesis and aqueous ozonation of some pyridinium salts with alkoxymethyl and alkylthiomethyl hydrophobic groups. Ind Eng Chem Res 43:1966–1974. doi:10.1021/ie030118z

    Article  CAS  Google Scholar 

  • Pernak J, Chwała P (2003) Synthesis and antimicrobial activities of choline-like quaternary ammonium chlorides. Eur J Med Chem 38:11–12. doi:10.1016/j.ejmech.2003.09.004

    Article  Google Scholar 

  • Pernak J, Kalewska J, Ksycińska H, Cybulski J (2001a) Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group. Eur J Med Chem 36:899–907. doi:10.1016/S0223-5234(01)80005-2

    Article  PubMed  CAS  Google Scholar 

  • Pernak J, Rogoża J, Mirska I (2001b) Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur J Med Chem 36:313–320. doi:10.1016/S0223-5234(01)01226-0

    Article  PubMed  CAS  Google Scholar 

  • Pernak J, Goca I, Mirska I (2004) Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem 6:323–329. doi:10.1039/b404625k

    Article  CAS  Google Scholar 

  • PN-86 C-04573/01 (1986) Polish standard method for gravimetric determination of hydrocarbon. Polski Komitet Normalizacji, Miar i Jakości, UKD 663.6.001.4:628.312:543.3

  • Potter TL, Simmons KE (1998) Composition of petroleum mixtures. Total petroleum hydrocarbon criteria working group series, vol 2. Amherst Scientific, Amherst

    Google Scholar 

  • Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastrorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lenghts in acute Vibrio fisheri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404

    Article  PubMed  CAS  Google Scholar 

  • Roberts DW, Costello J (2003) QSAR and mechanism of action for aquatic toxicity of cationic surfactants. QSAR Comb Sci 22:220–225

    Article  CAS  Google Scholar 

  • Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications for green chemistry. American Chemical Society ACS Ser. 818. Oxford University Press, Washington

    Google Scholar 

  • Ropel L, Belvèze LS, Aki SNVK, Stadtherr MA, Brennecke JF (2005) Octanol—water partition coefficients of imidazolium-based ionic liquids. Green Chem 7:83–90

    Article  CAS  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365

    Article  PubMed  CAS  Google Scholar 

  • Shi LJ, Shen BX, Wang GQ (2008) Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids. Energy Fuels 22:4177–4181

    Article  CAS  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  CAS  Google Scholar 

  • Siskin M, Francisco MA, Billimoria RM (2008) Upgrading of petroleum resid, bitumen or heavy oils by the separation of asphaltenes and/or resins therefrom using ionic liquids. U.S. Patent 2008/0245705 A1. October

  • Sjögren M, Li H, Rannug U, Westerholm R (1995) A multivariate statistical analysis of chemical composition and physical characteristics of ten diesel fuels. Fuel 74:983–989

    Article  Google Scholar 

  • Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Gołebiowski M, Gajdus J, Czerwicka M, Stepnowski P (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 71:157–165

    Article  PubMed  CAS  Google Scholar 

  • Stepnowski P, Mrozik W, Nichthauser J (2007) Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ Sci Technol 41:511–516

    Article  PubMed  CAS  Google Scholar 

  • Stock F, Hoffmann J, Ranke J, Störmann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholineesterase-a structure-activity relationship consideration. Green Chem 6:286–290

    Article  CAS  Google Scholar 

  • Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, Uerdingen M, Welz-Biermann U, Jastorff B, Ranke J (2006) Anion effects on the cytotoxicity of ionic liquids. Green Chem 8:621–629

    Article  CAS  Google Scholar 

  • Stolte S, Arning J, Bottin-Weber U, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J (2007a) Effects of different head groups and modified side chains on the cytotoxicity of ionic liquids. Green Chem 9:760–767

    Article  CAS  Google Scholar 

  • Stolte S, Matzke M, Arning J, Böschen A, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J (2007b) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179

    Article  CAS  Google Scholar 

  • Studzińska S, Sprynskyy M, Buszewski B (2008) Study of sorption kinetics of some ionic liquids on different soil types. Chemosphere 71:2121–2128

    Article  PubMed  Google Scholar 

  • Vaher M, Koel M, Kaljurand M (2002) Application of 1-alkyl-3-methylimidazolium-based ionic liquids in non-aqueous capillary electrophoresis. J Chromatogr A 979:27–32

    Article  PubMed  CAS  Google Scholar 

  • Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Waters J, Kupfer W (1976) The determination of cationic surfactants in the presence of anionic surfactant in biodegradation test liquors. Anal Chim Acta 85:241–251

    Article  CAS  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Bakshi BR, Demessie ES (2008) Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environ Sci Technol 42:1724–1730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Isolation and identification of microbial consortium was supported from Grant No. N N305 035434 Polish Ministry of Science and Higher Education, years 2008–2010. We would like to thank the anonymous reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Chrzanowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrzanowski, Ł., Stasiewicz, M., Owsianiak, M. et al. Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues. Biodegradation 20, 661–671 (2009). https://doi.org/10.1007/s10532-009-9253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9253-3

Keywords

Navigation