Advertisement

Biodegradation

, Volume 20, Issue 5, pp 661–671 | Cite as

Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues

  • Łukasz Chrzanowski
  • Monika Stasiewicz
  • Mikołaj Owsianiak
  • Alicja Szulc
  • Agnieszka Piotrowska-Cyplik
  • Agnieszka K. Olejnik-Schmidt
  • Bogdan Wyrwas
Original Paper

Abstract

Fast development of ionic liquids as gaining more and more attention valuable chemicals will undoubtedly lead to environmental pollution. New formulations and application of ionic liquids may result in contamination in the presence of hydrophobic compounds, such as petroleum mixtures. We hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C3 to C18) on biodegradation of diesel fuel by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C8–C18) caused a decrease in diesel fuel biodegradation. As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C3 and C18 homologues, respectively. We conclude that in the presence of hydrocarbons acting as a solvent, the increased bioavailability of hydrophobic homologues is responsible for the decrease in biodegradation efficiency of diesel fuel.

Keywords

Biodegradation DBAS Diesel fuel Hydrocarbons Microbial consortium Ionic liquids Toxicity 

Notes

Acknowledgments

Isolation and identification of microbial consortium was supported from Grant No. N N305 035434 Polish Ministry of Science and Higher Education, years 2008–2010. We would like to thank the anonymous reviewers for their constructive comments on the manuscript.

References

  1. Arning J, Stolte S, Böschen A, Stock F, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J (2008) Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem 10:47–58. doi: 10.1039/b712109a CrossRefGoogle Scholar
  2. Belvèze LS (2004) Modeling and measurements of thermodynamic properties of ionic liquids. MSc thesis, University of Notre Dame, Notre Dame, INGoogle Scholar
  3. Bernot RJ, Kennedy EE, Lamberti GA (2005) Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem 24:1759–1765. doi: 10.1897/04-614R.1 PubMedCrossRefGoogle Scholar
  4. Bösmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid W (2001) Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun (Camb) 7:2494–2495. doi: 10.1039/b108411a CrossRefGoogle Scholar
  5. Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428. doi: 10.1046/j.1365-2672.1999.00678.x PubMedCrossRefGoogle Scholar
  6. Chrzanowski Ł, Owsianiak M, Wyrwas B, Aurich A, Szulc A, Olszanowski A (2009) Adsorption of sodium dodecyl benzene sulphonate (SDBS) on Candida maltosa EH 15 strain: influence on cell surface hydrophobicity and n-alkanes biodegradation. Water Air Soil Pollut 196:345–353. doi: 10.1007/s11270-008-9782-0 CrossRefGoogle Scholar
  7. Cieniecka-Rosłonkiewicz A, Pernak J, Kubis-Feder J, Ramani A, Robertson AJ, Seddon KR (2005) Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem 7:855–862. doi: 10.1039/b508499g CrossRefGoogle Scholar
  8. Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure—property relationship modeling. Green Chem 8:82–90. doi: 10.1039/b511333d CrossRefGoogle Scholar
  9. Cross J (1994) Introduction to cationic surfactants. In: Cross J, Singer EJ (eds) Cationic surfactants, analytical and biological evaluation, surfactant science series, vol 53. Marcel Dekker, NY, Chapter 1Google Scholar
  10. Docherty KM, Kulpa CF Jr (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189. doi: 10.1039/b419172b CrossRefGoogle Scholar
  11. Docherty KM, Dixon JK, Kulpa CF Jr (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18:481–493. doi: 10.1007/s10532-006-9081-7 PubMedCrossRefGoogle Scholar
  12. Endo S, Schmidt T (2006) Prediction of partitioning between complex organic mixtures and water: application of polyparameter linear free energy relationships. Environ Sci Technol 40:536–545. doi: 10.1021/es0515811 PubMedCrossRefGoogle Scholar
  13. Fan H, Li Z, Liang T (2007) Experimental study on using ionic liquids to upgrade heavy oil. J Fuel Chem Technol 35:32–35CrossRefGoogle Scholar
  14. Gao H, Luo M, Xing J, Wu Y, Li Y, Li W, Liu Q, Liu H (2008) Desulfurization of fuel by extraction with pyridinium-based ionic liquids. Ind Eng Chem Res 47:8384–8388. doi: 10.1021/ie800739w CrossRefGoogle Scholar
  15. García MT, Ribosa I, Guindulain T, Sánchez-Leal J, Vives-Rego J (2001) Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ Pollut 111:169–175. doi: 10.1016/S0269-7491(99)00322-X PubMedCrossRefGoogle Scholar
  16. García MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem 7:9–14. doi: 10.1039/b411922c CrossRefGoogle Scholar
  17. Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A 222:101–117. doi: 10.1016/S0926-860X(01)00834-1 CrossRefGoogle Scholar
  18. Hansch C, Leo A (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DCGoogle Scholar
  19. Hartmans S, de Bont JAM, Harder W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Lett 63:235–264. doi: 10.1111/j.1574-6968.1989.tb03399.x CrossRefGoogle Scholar
  20. Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomeration of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051. doi: 10.1016/0045-6535(95)00015-Z CrossRefGoogle Scholar
  21. Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238. doi: 10.1007/s007920050065 PubMedCrossRefGoogle Scholar
  22. ISO 2871-2:1990 (1990) Surface active agents—detergents—determination of cationic-active matter content—part 2: cationic-active matter of low molecular mass (between 200 and 500)Google Scholar
  23. Ito H, Hosokawa R, Morikawa M, Okuyama H (2008) A turbine oil-degrading bacterial consortium from soils of oil fields and its characteristics. Int Biodeter Biodegr 61:223–232. doi: 10.1016/j.ibiod.2007.08.001 CrossRefGoogle Scholar
  24. Jastorff B, Mölter K, Behrend P, Bottin-Weber U, Filser J, Heimers A, Ondruschka B, Ranke J, Schaefer M, Schröder H, Stark A, Stepnowski P, Stock F, Störmann R, Stolte S, Welz-Biermann U, Ziegert S, Thöming J (2005) Progress in evaluation of risk potential of ionic liquids-basis for an eco-design of sustainable products. Green Chem 7:362–372. doi: 10.1039/b418518h CrossRefGoogle Scholar
  25. Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41:267–273. doi: 10.1007/BF00186971 CrossRefGoogle Scholar
  26. Kralisch D, Stark A, Körsten S, Kreisel G, Ondruschka B (2005) Energetic, environmental and economic balances: spice up your ionic liquid research efficiency. Green Chem 7:301–309. doi: 10.1039/b417167e CrossRefGoogle Scholar
  27. Liu D, Gui J, Song L, Zhang X, Sun Z (2008) Deep desulfurization of diesel fuel by extraction with task-specific ionic liquids. Petrol Sci Tech 26:973–982. doi: 10.1080/10916460600695496 CrossRefGoogle Scholar
  28. Maila MP, Randima P, Drønen K, Cloete TE (2006) Soil microbial communities: influence of geographic location and hydrocarbon pollutants. Soil Biol Biochem 38:303–310Google Scholar
  29. Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207. doi: 10.1039/b705795d CrossRefGoogle Scholar
  30. Matzke M, Thiele K, Müller A, Filser J (2009) Sorption and desorption of imidazolium based ionic liquids in different soil types. Chemosphere 74:568–574. doi: 10.1016/j.chemosphere.2008.09.049 PubMedCrossRefGoogle Scholar
  31. Meylan WM, Howard PH (1995) Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci 84:83–92. doi: 10.1002/jps.2600840120 PubMedCrossRefGoogle Scholar
  32. Mochizuki Y, Sugawara K (2008) Removal of organic sulfur from hydrocarbon resources using ionic liquids. Energy Fuels 22:3303–3307. doi: 10.1021/ef800400k CrossRefGoogle Scholar
  33. Modelli A, Sali A, Galletti P, Samorì C (2008) Biodegradation of oxygenated and non-oxygenated imidazolium-based ionic liquids in soil. Chemosphere 73:1322–1327. doi: 10.1016/j.chemosphere.2008.07.012 PubMedCrossRefGoogle Scholar
  34. Olivier-Bourbigou H, Magna L (2002) Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A 182:419–437. doi: 10.1016/S1381-1169(01)00465-4 CrossRefGoogle Scholar
  35. Pernak J, Branicka M (2003) The properties of 1-alkoxymethyl-3-hydroxypyridinium and 1-alkoxymethyl-3-dimethylaminopyridinium chlorides. J Surfactants Deterg 6:119–123. doi: 10.1007/s11743-003-0254-5 CrossRefGoogle Scholar
  36. Pernak J, Branicka M (2004) Synthesis and aqueous ozonation of some pyridinium salts with alkoxymethyl and alkylthiomethyl hydrophobic groups. Ind Eng Chem Res 43:1966–1974. doi: 10.1021/ie030118z CrossRefGoogle Scholar
  37. Pernak J, Chwała P (2003) Synthesis and antimicrobial activities of choline-like quaternary ammonium chlorides. Eur J Med Chem 38:11–12. doi: 10.1016/j.ejmech.2003.09.004 CrossRefGoogle Scholar
  38. Pernak J, Kalewska J, Ksycińska H, Cybulski J (2001a) Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group. Eur J Med Chem 36:899–907. doi: 10.1016/S0223-5234(01)80005-2 PubMedCrossRefGoogle Scholar
  39. Pernak J, Rogoża J, Mirska I (2001b) Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur J Med Chem 36:313–320. doi: 10.1016/S0223-5234(01)01226-0 PubMedCrossRefGoogle Scholar
  40. Pernak J, Goca I, Mirska I (2004) Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem 6:323–329. doi: 10.1039/b404625k CrossRefGoogle Scholar
  41. PN-86 C-04573/01 (1986) Polish standard method for gravimetric determination of hydrocarbon. Polski Komitet Normalizacji, Miar i Jakości, UKD 663.6.001.4:628.312:543.3Google Scholar
  42. Potter TL, Simmons KE (1998) Composition of petroleum mixtures. Total petroleum hydrocarbon criteria working group series, vol 2. Amherst Scientific, AmherstGoogle Scholar
  43. Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastrorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lenghts in acute Vibrio fisheri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404PubMedCrossRefGoogle Scholar
  44. Roberts DW, Costello J (2003) QSAR and mechanism of action for aquatic toxicity of cationic surfactants. QSAR Comb Sci 22:220–225CrossRefGoogle Scholar
  45. Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications for green chemistry. American Chemical Society ACS Ser. 818. Oxford University Press, WashingtonGoogle Scholar
  46. Ropel L, Belvèze LS, Aki SNVK, Stadtherr MA, Brennecke JF (2005) Octanol—water partition coefficients of imidazolium-based ionic liquids. Green Chem 7:83–90CrossRefGoogle Scholar
  47. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33CrossRefGoogle Scholar
  48. Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365PubMedCrossRefGoogle Scholar
  49. Shi LJ, Shen BX, Wang GQ (2008) Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids. Energy Fuels 22:4177–4181CrossRefGoogle Scholar
  50. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedGoogle Scholar
  51. Siskin M, Francisco MA, Billimoria RM (2008) Upgrading of petroleum resid, bitumen or heavy oils by the separation of asphaltenes and/or resins therefrom using ionic liquids. U.S. Patent 2008/0245705 A1. OctoberGoogle Scholar
  52. Sjögren M, Li H, Rannug U, Westerholm R (1995) A multivariate statistical analysis of chemical composition and physical characteristics of ten diesel fuels. Fuel 74:983–989CrossRefGoogle Scholar
  53. Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Gołebiowski M, Gajdus J, Czerwicka M, Stepnowski P (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 71:157–165PubMedCrossRefGoogle Scholar
  54. Stepnowski P, Mrozik W, Nichthauser J (2007) Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ Sci Technol 41:511–516PubMedCrossRefGoogle Scholar
  55. Stock F, Hoffmann J, Ranke J, Störmann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholineesterase-a structure-activity relationship consideration. Green Chem 6:286–290CrossRefGoogle Scholar
  56. Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, Uerdingen M, Welz-Biermann U, Jastorff B, Ranke J (2006) Anion effects on the cytotoxicity of ionic liquids. Green Chem 8:621–629CrossRefGoogle Scholar
  57. Stolte S, Arning J, Bottin-Weber U, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J (2007a) Effects of different head groups and modified side chains on the cytotoxicity of ionic liquids. Green Chem 9:760–767CrossRefGoogle Scholar
  58. Stolte S, Matzke M, Arning J, Böschen A, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J (2007b) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179CrossRefGoogle Scholar
  59. Studzińska S, Sprynskyy M, Buszewski B (2008) Study of sorption kinetics of some ionic liquids on different soil types. Chemosphere 71:2121–2128PubMedCrossRefGoogle Scholar
  60. Vaher M, Koel M, Kaljurand M (2002) Application of 1-alkyl-3-methylimidazolium-based ionic liquids in non-aqueous capillary electrophoresis. J Chromatogr A 979:27–32PubMedCrossRefGoogle Scholar
  61. Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley–VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  62. Waters J, Kupfer W (1976) The determination of cationic surfactants in the presence of anionic surfactant in biodegradation test liquors. Anal Chim Acta 85:241–251CrossRefGoogle Scholar
  63. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083PubMedCrossRefGoogle Scholar
  64. Zhang Y, Bakshi BR, Demessie ES (2008) Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environ Sci Technol 42:1724–1730PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Łukasz Chrzanowski
    • 1
  • Monika Stasiewicz
    • 1
  • Mikołaj Owsianiak
    • 2
  • Alicja Szulc
    • 1
  • Agnieszka Piotrowska-Cyplik
    • 3
  • Agnieszka K. Olejnik-Schmidt
    • 4
  • Bogdan Wyrwas
    • 5
  1. 1.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznańPoland
  2. 2.Department of Environmental EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Institute of Food Technology of Plant OriginPoznan University of Life SciencesPoznańPoland
  4. 4.Department of Biotechnology and Food MicrobiologyPoznan University of Life SciencesPoznańPoland
  5. 5.Institute of ChemistryPoznan University of TechnologyPoznańPoland

Personalised recommendations