Skip to main content

Advertisement

Log in

Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Three pentachlorophenol (PCP) degrading bacterial strains were isolated from sediment core of pulp and paper mill effluent discharge site. The strains were continuously enriched in mineral salts medium supplemented with PCP as sole source of carbon and energy. One of the acclimated strains with relatively high PCP degradation capability was selected and characterized in this study. Based on morphology, biochemical tests, 16S rDNA sequence analysis and phylogenetic characteristics, the strains showed greatest similarity with Acinetobacter spp. The strain was identified as Acinetobacter sp. ISTPCP-3. The physiological characteristics and optimum growth conditions of the bacterial strain were investigated. The results of optimum growth temperature revealed that it was a mesophile. The optimum growth temperature for the strain was 30°C. The preferential initial pH for the strain was ranging at 6.5–7.5, the optimum pH was 7. The bacterium was able to tolerate and degrade PCP up to a concentration of 200 mg/l. Increase in PCP concentration had a negative effect on biodegradation rate and PCP concentration above 250 mg/l was inhibitory to its growth. Acinetobacter sp. ISTPCP-3 was able to utilize PCP through an oxidative route with ortho ring-cleavage with the formation of 2,3,5,6-tetrachlorohydroquinone and 2-chloro-1,4-benzenediol, identified using gas chromatograph–mass spectrometric (GC–MS) analysis. The degradation pathway followed by isolated bacterium is different from previously characterized pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Annachhatre AP, Gheewala SH (1996) Biodegradation of chlorinated phenolic compounds. Biotechnol Adv 14:35–56. doi:10.1016/0734-9750(96)00002-X

    Article  PubMed  CAS  Google Scholar 

  • Bock C, Kroppenstedt RM, Schmidt U, Diekmann H (1996) Degradation of prochloraz and 2,4,6-trichlorophenol by environmental bacterial strains. Appl Microbiol Biotechnol 45:257–262. doi:10.1007/s002530050680

    Article  PubMed  CAS  Google Scholar 

  • Cai M, Xun L (2002) Organization and regulation of pentachlorophenol degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680. doi:10.1128/JB.184.17.4672-4680.2002

    Article  PubMed  CAS  Google Scholar 

  • Chanama S, Crawford RL (1997) Mutational analysis of pcpA and its role in pentachlorophenol degradation by Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723. Appl Environ Microbiol 63:4833–4838

    PubMed  CAS  Google Scholar 

  • Chen L, Yang J (2008) Biochemical characterization of the tetrachlobenzoquinone reductase involved in the biodegradation of pentachlorophenol. Int J Mol Sci 9:198–212. doi:10.3390/ijms9030198

    Article  PubMed  Google Scholar 

  • Crawford RL, Mohn WW (1985) Microbial removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb Technol 7:617–620. doi:10.1016/0141-0229(85)90031-6

    Article  CAS  Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizomediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870. doi:10.1016/j.chemosphere.2007.02.014

    Article  PubMed  CAS  Google Scholar 

  • Edgehill RU (1994) Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recovered Arthrobacter strain ATCC 33790. Appl Microbiol Biotechnol 41:142–148. doi:10.1007/BF00166097

    Article  CAS  Google Scholar 

  • Edgehill RU, Finn RK (1983) Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol 45:1122–1125

    PubMed  CAS  Google Scholar 

  • Holding AJ, Collee JG (1997) Routine biochemical tests. Methods Microbiol 16:1–32

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, pp 626–640

    Google Scholar 

  • Hu Z, Wu YR, Lin BK, Maskaoui K, Zhuang DH, Zheng TL (2006) Isolation and characterization of two phenol degrading yeast strains from marine sediment. Bull Environ Contam Toxicol 76:899–906. doi:10.1007/s00128-006-1003-1

    Article  PubMed  CAS  Google Scholar 

  • Kaoa CM, Chaib CT, Liub JK, Yehc TY, Chena KF, Chend SC (2004) Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res 38:663–672. doi:10.1016/j.watres.2003.10.030

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  PubMed  CAS  Google Scholar 

  • Leung KM, Campbell S, Gan Y, White DC, Lee H, Trevors T (1999) The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol Lett 173:247–253. doi:10.1111/j.1574-6968.1999.tb13509.x

    Article  PubMed  CAS  Google Scholar 

  • McAllister KA, Lee H, Trevors JT (1996) Microbial degradation of pentachlorophenol. Biodegradation 7:1–40. doi:10.1007/BF00056556

    Article  CAS  Google Scholar 

  • Miethling R, Karlson U (1996) Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2. Appl Environ Microbiol 62:4361–4366

    PubMed  CAS  Google Scholar 

  • Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T, Nagata Y, Mitsui Y, Takagi M (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC 39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459:395–398. doi:10.1016/S0014-5793(99)01305-8

    Article  PubMed  CAS  Google Scholar 

  • Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ (1993) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416

    PubMed  CAS  Google Scholar 

  • Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287. doi:10.1146/annurev.mi.42.100188.001403

    Article  PubMed  CAS  Google Scholar 

  • Saber DL, Crawford RL (1985) Isolation and characterization of Flavobacterium strain that degrade pentachlorophenol. Appl Environ Microbiol 50:1512–1518

    PubMed  CAS  Google Scholar 

  • Sai K, Kang KS, Hirose A, Hasegawa R, Trosko JE, Inoue T (2001) Inhibition of apoptosis by pentachlorophenol by v-myc-transfected rat liver epithelial cells: relation to down-regulation of gap junctional intercellular communication. Cancer Lett 173:163–174. doi:10.1016/S0304-3835(01)00616-4

    Article  PubMed  CAS  Google Scholar 

  • Shiu WY, Ma KC, Varhanickova D, MacKay D (1994) Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 29:1155–1224. doi:10.1016/0045-6535(94)90252-6

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206. doi:10.1128/AEM.69.9.5198-5206.2003

    Article  PubMed  CAS  Google Scholar 

  • Tartakovsky B, Levesque MJ, Dumortier R, Beaudet R, Guiot SR (1999) Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 65:4357–4362

    PubMed  CAS  Google Scholar 

  • Tartakovsky B, Manuel MF, Beaumier D, Greer CW, Guiot SR (2001) Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotechnol Bioeng 73:476–483. doi:10.1002/bit.1082

    Article  PubMed  CAS  Google Scholar 

  • Thakur IS, Verma P, Upadhyaya KC (2001) Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp from a chemostat. Biochem Biophys Res Commun 286:109–113. doi:10.1006/bbrc.2001.5340

    Article  PubMed  CAS  Google Scholar 

  • Thakur IS, Verma PK, Upadhaya KC (2002) Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat. Biochem Biophys Res Commun 290:770–774. doi:10.1006/bbrc.2001.6239

    Article  PubMed  CAS  Google Scholar 

  • Vallecillo A, Garcia-Encina PA, Pena M (1999) Anaerobic biodegradability and toxicity of chlorophenols. Water Sci Technol 40:161–168. doi:10.1016/S0273-1223(99)00622-8

    CAS  Google Scholar 

  • Wang YT, Muthukrishnan S, Wang Z (1998) Reductive dechlorination of chlorophenols in methanogenic cultures. J Environ Eng 124:231–238. doi:10.1061/(ASCE)0733-9372(1998)124:3(231)

    Article  CAS  Google Scholar 

  • Xun L, Orser CS (1991) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol 173:4447–4453

    PubMed  CAS  Google Scholar 

  • Xun L, Topp E, Orser CS (1992) Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol 174:2898–2902

    PubMed  CAS  Google Scholar 

  • Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62:709–714. doi:10.1016/j.chemosphere.2005.05.012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the grants received as a part of university with potential of excellence, University Grants Commission, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Thakur, I.S. & Dureja, P. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 20, 643–650 (2009). https://doi.org/10.1007/s10532-009-9251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9251-5

Keywords

Navigation