, Volume 20, Issue 5, pp 643–650 | Cite as

Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site

  • Ashwani Sharma
  • Indu Shekhar Thakur
  • Prem Dureja
Original Paper


Three pentachlorophenol (PCP) degrading bacterial strains were isolated from sediment core of pulp and paper mill effluent discharge site. The strains were continuously enriched in mineral salts medium supplemented with PCP as sole source of carbon and energy. One of the acclimated strains with relatively high PCP degradation capability was selected and characterized in this study. Based on morphology, biochemical tests, 16S rDNA sequence analysis and phylogenetic characteristics, the strains showed greatest similarity with Acinetobacter spp. The strain was identified as Acinetobacter sp. ISTPCP-3. The physiological characteristics and optimum growth conditions of the bacterial strain were investigated. The results of optimum growth temperature revealed that it was a mesophile. The optimum growth temperature for the strain was 30°C. The preferential initial pH for the strain was ranging at 6.5–7.5, the optimum pH was 7. The bacterium was able to tolerate and degrade PCP up to a concentration of 200 mg/l. Increase in PCP concentration had a negative effect on biodegradation rate and PCP concentration above 250 mg/l was inhibitory to its growth. Acinetobacter sp. ISTPCP-3 was able to utilize PCP through an oxidative route with ortho ring-cleavage with the formation of 2,3,5,6-tetrachlorohydroquinone and 2-chloro-1,4-benzenediol, identified using gas chromatograph–mass spectrometric (GC–MS) analysis. The degradation pathway followed by isolated bacterium is different from previously characterized pathway.


Acinetobacter sp. ISTPCP-3 Biodegradation Characterization Gas chromatograph–mass spectrometer Pentachlorophenol 



The work was supported by the grants received as a part of university with potential of excellence, University Grants Commission, Government of India.


  1. Annachhatre AP, Gheewala SH (1996) Biodegradation of chlorinated phenolic compounds. Biotechnol Adv 14:35–56. doi: 10.1016/0734-9750(96)00002-X PubMedCrossRefGoogle Scholar
  2. Bock C, Kroppenstedt RM, Schmidt U, Diekmann H (1996) Degradation of prochloraz and 2,4,6-trichlorophenol by environmental bacterial strains. Appl Microbiol Biotechnol 45:257–262. doi: 10.1007/s002530050680 PubMedCrossRefGoogle Scholar
  3. Cai M, Xun L (2002) Organization and regulation of pentachlorophenol degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680. doi: 10.1128/JB.184.17.4672-4680.2002 PubMedCrossRefGoogle Scholar
  4. Chanama S, Crawford RL (1997) Mutational analysis of pcpA and its role in pentachlorophenol degradation by Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723. Appl Environ Microbiol 63:4833–4838PubMedGoogle Scholar
  5. Chen L, Yang J (2008) Biochemical characterization of the tetrachlobenzoquinone reductase involved in the biodegradation of pentachlorophenol. Int J Mol Sci 9:198–212. doi: 10.3390/ijms9030198 PubMedCrossRefGoogle Scholar
  6. Crawford RL, Mohn WW (1985) Microbial removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb Technol 7:617–620. doi: 10.1016/0141-0229(85)90031-6 CrossRefGoogle Scholar
  7. Dams RI, Paton GI, Killham K (2007) Rhizomediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870. doi: 10.1016/j.chemosphere.2007.02.014 PubMedCrossRefGoogle Scholar
  8. Edgehill RU (1994) Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recovered Arthrobacter strain ATCC 33790. Appl Microbiol Biotechnol 41:142–148. doi: 10.1007/BF00166097 CrossRefGoogle Scholar
  9. Edgehill RU, Finn RK (1983) Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol 45:1122–1125PubMedGoogle Scholar
  10. Holding AJ, Collee JG (1997) Routine biochemical tests. Methods Microbiol 16:1–32Google Scholar
  11. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, pp 626–640Google Scholar
  12. Hu Z, Wu YR, Lin BK, Maskaoui K, Zhuang DH, Zheng TL (2006) Isolation and characterization of two phenol degrading yeast strains from marine sediment. Bull Environ Contam Toxicol 76:899–906. doi: 10.1007/s00128-006-1003-1 PubMedCrossRefGoogle Scholar
  13. Kaoa CM, Chaib CT, Liub JK, Yehc TY, Chena KF, Chend SC (2004) Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res 38:663–672. doi: 10.1016/j.watres.2003.10.030 CrossRefGoogle Scholar
  14. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi: 10.1093/bib/5.2.150 PubMedCrossRefGoogle Scholar
  15. Leung KM, Campbell S, Gan Y, White DC, Lee H, Trevors T (1999) The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol Lett 173:247–253. doi: 10.1111/j.1574-6968.1999.tb13509.x PubMedCrossRefGoogle Scholar
  16. McAllister KA, Lee H, Trevors JT (1996) Microbial degradation of pentachlorophenol. Biodegradation 7:1–40. doi: 10.1007/BF00056556 CrossRefGoogle Scholar
  17. Miethling R, Karlson U (1996) Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2. Appl Environ Microbiol 62:4361–4366PubMedGoogle Scholar
  18. Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T, Nagata Y, Mitsui Y, Takagi M (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC 39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459:395–398. doi: 10.1016/S0014-5793(99)01305-8 PubMedCrossRefGoogle Scholar
  19. Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ (1993) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416PubMedGoogle Scholar
  20. Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287. doi: 10.1146/annurev.mi.42.100188.001403 PubMedCrossRefGoogle Scholar
  21. Saber DL, Crawford RL (1985) Isolation and characterization of Flavobacterium strain that degrade pentachlorophenol. Appl Environ Microbiol 50:1512–1518PubMedGoogle Scholar
  22. Sai K, Kang KS, Hirose A, Hasegawa R, Trosko JE, Inoue T (2001) Inhibition of apoptosis by pentachlorophenol by v-myc-transfected rat liver epithelial cells: relation to down-regulation of gap junctional intercellular communication. Cancer Lett 173:163–174. doi: 10.1016/S0304-3835(01)00616-4 PubMedCrossRefGoogle Scholar
  23. Shiu WY, Ma KC, Varhanickova D, MacKay D (1994) Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 29:1155–1224. doi: 10.1016/0045-6535(94)90252-6 CrossRefGoogle Scholar
  24. Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206. doi: 10.1128/AEM.69.9.5198-5206.2003 PubMedCrossRefGoogle Scholar
  25. Tartakovsky B, Levesque MJ, Dumortier R, Beaudet R, Guiot SR (1999) Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 65:4357–4362PubMedGoogle Scholar
  26. Tartakovsky B, Manuel MF, Beaumier D, Greer CW, Guiot SR (2001) Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotechnol Bioeng 73:476–483. doi: 10.1002/bit.1082 PubMedCrossRefGoogle Scholar
  27. Thakur IS, Verma P, Upadhyaya KC (2001) Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp from a chemostat. Biochem Biophys Res Commun 286:109–113. doi: 10.1006/bbrc.2001.5340 PubMedCrossRefGoogle Scholar
  28. Thakur IS, Verma PK, Upadhaya KC (2002) Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat. Biochem Biophys Res Commun 290:770–774. doi: 10.1006/bbrc.2001.6239 PubMedCrossRefGoogle Scholar
  29. Vallecillo A, Garcia-Encina PA, Pena M (1999) Anaerobic biodegradability and toxicity of chlorophenols. Water Sci Technol 40:161–168. doi: 10.1016/S0273-1223(99)00622-8 Google Scholar
  30. Wang YT, Muthukrishnan S, Wang Z (1998) Reductive dechlorination of chlorophenols in methanogenic cultures. J Environ Eng 124:231–238. doi: 10.1061/(ASCE)0733-9372(1998)124:3(231) CrossRefGoogle Scholar
  31. Xun L, Orser CS (1991) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol 173:4447–4453PubMedGoogle Scholar
  32. Xun L, Topp E, Orser CS (1992) Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol 174:2898–2902PubMedGoogle Scholar
  33. Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62:709–714. doi: 10.1016/j.chemosphere.2005.05.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ashwani Sharma
    • 1
  • Indu Shekhar Thakur
    • 1
  • Prem Dureja
    • 2
  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Division of Agricultural ChemicalsIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations