, Volume 20, Issue 5, pp 593–601 | Cite as

Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil

  • Salvador Lladó
  • Nuria Jiménez
  • Marc Viñas
  • Anna Maria Solanas
Original Paper


A previous bioremediation survey on a creosote-contaminated soil showed that aeration and optimal humidity promoted depletion of three-ringed polycyclic aromatic hydrocarbons (PAHs), but residual concentrations of four-ringed benzo(a)anthracene (B(a)A) and chrysene (Chry) remained. In order to explain the lack of further degradation of heavier PAHs such as four-ringed PAHs and to analyze the microbial population responsible for PAH biodegradation, a chemical and microbial molecular approach was used. Using a slurry incubation strategy, soil in liquid mineral medium with and without additional B(a)A and Chry was found to contain a powerful PAH-degrading microbial community that eliminated 89% and 53% of the added B(a)A and Chry, respectively. It is hypothesized that the lack of PAH bioavailability hampered their further biodegradation in the unspiked soil. According to the results of the culture-dependent and independent techniques Mycobacterium parmense, Pseudomonas mexicana, and Sphingobacterials group could control B(a)A and Chry degradation in combination with several microorganisms with secondary metabolic activity.


Polycyclic aromatic hydrocarbons Biodegradation Bioavailability Bioremediation Pyrene Chrysene 16SrRNA DGGE 



This study was financially supported by the Spanish Ministry of Science and Technology (CTM2007-61097/TECNO) and by the Reference Network in Biotechnology (XERBA) of the Autonomous Government of Catalonia. The authors declare that the experiments discussed in this paper were performed in compliance with current Spanish and European legislation.


  1. Abalos A, Viñas M, Sabaté J, Manresa MA, Solanas AM (2004) Enhanced biodegradation of casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15:249–260. doi: 10.1023/B:BIOD.0000042915.28757.fb PubMedCrossRefGoogle Scholar
  2. Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29:2713–2717. doi: 10.1021/es00011a003 CrossRefGoogle Scholar
  3. Alexander M (1999) Biodegradation and bioremediation. Academic Press, San DiegoGoogle Scholar
  4. Fanti F, Tortoli E, Hall L, Roberts GD, Kroppenstedt RM, Dodi I, Conti S, Polonelli L, Chezzi C (2004) Mycobacterium parmense sp. nov. Int J Syst Evol Microbiol 54:1123–1127. doi: 10.1099/ijs.0.02760-0 PubMedCrossRefGoogle Scholar
  5. Farmer PB, Singh R, Kaur B, Sram RJ, Binkova B, Kalina I, Popov TA, Garte S, Taioli E, Gabelova A, Cebulska-Wasilewska A (2003) Molecular epidemiology studies of carcinogenic environmental pollutants: effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res 544:397–402. doi: 10.1016/j.mrrev.2003.09.002 PubMedCrossRefGoogle Scholar
  6. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  7. Hareland W, Crawford RL, Chapman PJ, Dagley S (1975) Metabolic function and propierties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol 121:272–285PubMedGoogle Scholar
  8. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174. doi: 10.1093/nar/28.1.173 PubMedCrossRefGoogle Scholar
  9. Miller CD, Child R, Hughes JE, Benscai M, Der JP, Sims RC, Anderson AJ (2007) Diversity of soil mycobacterium isolates from three sites that degrade polycyclic aromatic hydrocarbobns. J Appl Microbiol 102:1612–1624. doi: 10.1111/j.1365-2672.2006.03202.x PubMedCrossRefGoogle Scholar
  10. Sabaté J, Viñas M, Solanas AM (2006) Bioavailability assessment and environmental fate of PAHs in biostimulated creosote-contaminated soil. Chemosphere 63:1648–1659. doi: 10.1016/j.chemosphere.2005.10.020 PubMedCrossRefGoogle Scholar
  11. Thierry S, Macarie H, Iizuka T, Geissdoerfer W, Assih EA, Spanevello M, Verhe F, Thomas P, Fudou R, Monroy O, Labat M, Ouattara AS (2004) Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int J Syst Evol Microbiol 54:2245–2255. doi: 10.1099/ijs.0.02810-0 PubMedCrossRefGoogle Scholar
  12. Turenne CY, Tschetter L, Wolfe J, Kabani A (2001) Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol 39:3638–3648. doi: 10.1128/JCM.39.10.3638-3648.2001 CrossRefGoogle Scholar
  13. Viñas M, Sabaté J, Solanas AM (2005a) Culture-dependent and -independent approaches establish the complexity of a PAH-degrading microbial consortium. Can J Microbiol 51:897–909. doi: 10.1139/w05-090 PubMedCrossRefGoogle Scholar
  14. Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005b) Bacterial community dynamics and PAHs degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018. doi: 10.1128/AEM.71.11.7008-7018.2005 PubMedCrossRefGoogle Scholar
  15. Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676. doi: 10.1007/BF00167921 CrossRefGoogle Scholar
  16. Weon HY, Kim BY, Hong SB, Joa HJ, Nam SS, Lee KH, Kwon SW (2007) Skermanella aerolata p. nov., isolated from air, emended description of the genus Skermanella. Int J Syst Evol Microbiol 57:1539–1542. doi: 10.1099/ijs.0.64676-0 PubMedCrossRefGoogle Scholar
  17. Wilson SC, Jones KC (1993) Bioremediation of PAHs contaminated soils. Environ Pollut 81:229–249. doi: 10.1016/0269-7491(93)90206-4 (Review)PubMedCrossRefGoogle Scholar
  18. Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon-degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258PubMedCrossRefGoogle Scholar
  19. Xie CH, Yokota A (2005) Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. Nov., Azohydromonas australica sp. nov. and Pelomonas saccharopila gen. nov., comb. Nov., respectively. Int J Syst Evol Microbiol 55:2419–2425. doi: 10.1099/ijs.0.63733-0 PubMedCrossRefGoogle Scholar
  20. Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806. doi: 10.1128/AEM.70.8.4800-4806.2004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Salvador Lladó
    • 1
  • Nuria Jiménez
    • 1
  • Marc Viñas
    • 2
  • Anna Maria Solanas
    • 1
  1. 1.Department of MicrobiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.GIRO Technological CentreMollet del VallesSpain

Personalised recommendations