, Volume 20, Issue 3, pp 391–400 | Cite as

Identification of novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 and application for removal of nitrate from industrial wastewater

Original Paper


Two novel denitrifying bacteria were successfully isolated from industrial wastewater and soil samples. Using morphological, biochemical/biophysical and 16S rRNA gene analyses, these two bacteria were identified as Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13, respectively. Both of these two bacteria showed efficient NO3 -N removing abilities under a semi-anaerobic condition without obvious accumulation of NO2 -N, N2O-N and NH4 +-N. NO3 -N removal from paper mill wastewater was also successful by treatments with either a denitrifier or an immobilization method. Therefore, this study provides valuable denitrifying bacteria in biotreatment of industrial wastewater and other environmental pollution caused by NO3 /NO2 .


Biological nitrate removal Stenotrophomonas Oceanimonas Denitrifying bacteria Industrial wastewater Immobilization 



LY and YL were supported by the Student Research Fund (SRF) of Huazhong Agricultural University. This work was funded by the National Natural Science Foundation, P. R. China (30671140), and Microbial Resources Project of the Ministry of Science and Technology, P. R. China (2005DKA21208-6). The authors would like to express their gratitude to Drs. Christopher Rensing, Junchu Zhou and Yunxiang Liang for their scientific comments and technical supports.


  1. Bailey RW, Scott EG (1966) Diagnostic microbiology, 2nd edn. The CV. Mosby Company publisher, Saint LouisGoogle Scholar
  2. Betlach MR (1982) Evolution of bacterial denitrification and denitrifier diversity. Antonie Van Leeuwenhoek 48(6):585–607. doi: 10.1007/BF00399543 PubMedCrossRefGoogle Scholar
  3. Braker G, Ayala-del-Río HL, Devol AH et al (2001) Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol 67(4):1893–1901. doi: 10.1128/AEM.67.4.1893-1901.2001 PubMedCrossRefGoogle Scholar
  4. Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546. doi: 10.1099/mic.0.27303-0 PubMedCrossRefGoogle Scholar
  5. Chen MY, Tsay SS, Chen KY et al (2002) Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52:2155–2161. doi: 10.1099/ijs.0.02306-0 PubMedCrossRefGoogle Scholar
  6. Choi E, Yun Z, Chung TH (2004) Strong nitrogenous and agro-wastewater: current technological overview and future direction. Water Sci Technol 49(5–6):1–5PubMedGoogle Scholar
  7. Gabald’on C, Izquierdo M, Mart’ınez-Soria V et al (2007) Biological nitrate removal from wastewater of a metal-finishing industry. J Hazard Mater 148(1–2):485–490. doi: 10.1016/j.jhazmat.2007.02.071 CrossRefGoogle Scholar
  8. Greenberg AF, Clescerl LS, Eaton AD (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, DCGoogle Scholar
  9. Heylen K, Vanparys B, Peirsegaele F et al (2007) Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int J Syst Evol Microbiol 57:2056–2061. doi: 10.1099/ijs.0.65044-0 PubMedCrossRefGoogle Scholar
  10. Holt JG, Krieg NR, Sneath PHA et al (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, BaltimoreGoogle Scholar
  11. Horn MA, Ihssen J, Matthies C et al (2005) Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 55:1255–1265. doi: 10.1099/ijs.0.63484-0 PubMedCrossRefGoogle Scholar
  12. Jean WD, Chen JS, Lin YT et al (2006) Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol 56:2463–2467. doi: 10.1099/ijs.0.64306-0 PubMedCrossRefGoogle Scholar
  13. Kniemeyer O, Probian C, Rosselló-Mora R et al (1999) Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate. Appl Environ Microbiol 65(8):3319–3324PubMedGoogle Scholar
  14. Knowles R (1982) Denitrification. Microbiol Rev 46(1):43–70PubMedGoogle Scholar
  15. Kobayashi M, Matsuo Y, Takimoto A et al (1996) Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J Biol Chem 271(27):16263–16267. doi: 10.1074/jbc.271.27.16263 PubMedCrossRefGoogle Scholar
  16. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163. doi: 10.1093/bib/5.2.150 PubMedCrossRefGoogle Scholar
  17. Lee YN, Koo CD (2007) Identification of bacteria isolated from diseased Neungee mushroom, Sarcodon aspratus. J Basic Microbiol 47(1):31–39. doi: 10.1002/jobm.200610151 PubMedCrossRefGoogle Scholar
  18. Leta S, Gumaelius L, Assefa F et al (2004) Identification of efficient denitrifying bacteria from tannery wastewaters in Ethiopia and a study of the effects of chromium III and sulphide on their denitrification rate. World J Microbiol Biotechnol 20:405–411. doi: 10.1023/B:WIBI.0000033069.24982.6e CrossRefGoogle Scholar
  19. Liu C, Wu Y, Li L et al (2007) Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov. Int J Syst Evol Microbiol 57:316–320. doi: 10.1099/ijs.0.64544-0 PubMedCrossRefGoogle Scholar
  20. Mohamed MAA, Terao H, Suzuki R et al (2003) Natural denitrification in the Kakamigahara groundwater basin, Gifu prefecture, central Japan. Sci Total Environ 307(1–3):191–201. doi: 10.1016/S0048-9697(02)00536-3 PubMedCrossRefGoogle Scholar
  21. National Environmental Protection Administration of China (2006) Analysis for the examination of water and wastewater, 4th edn. Chinese Publish of Environment Science, BeijingGoogle Scholar
  22. Park KY, Inanori Y, Mizuochi M et al (2000) Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration. J Biosci Bioeng 90(3):247–252PubMedGoogle Scholar
  23. Philippot L (2002) Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta 1577(3):355–376PubMedGoogle Scholar
  24. Philips S, Laanbroek HJ, Verstraete W (2002) Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev Environ Sci Biotechnol 1(2):115–141. doi: 10.1023/A:1020892826575 CrossRefGoogle Scholar
  25. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT et al (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921. doi: 10.1038/nature04617 PubMedCrossRefGoogle Scholar
  26. Rehfuss M, Urban J (2005) Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst Appl Microbiol 28(5):421–429. doi: 10.1016/j.syapm.2005.03.003 PubMedCrossRefGoogle Scholar
  27. Robertson LA, Kuenen JG (1984) Aerobic denitrification-old wine in new bottles? Antonie Van Leeuwenhoek 50(5–6):525–544. doi: 10.1007/BF02386224 PubMedCrossRefGoogle Scholar
  28. Sakano Y, Pickering KD, Strom PF et al (2002) Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support. Appl Environ Microbiol 68(5):2285–2293. doi: 10.1128/AEM.68.5.2285-2293.2002 PubMedCrossRefGoogle Scholar
  29. Sambrook J, Russell DW (2001) Molecular Cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  30. Schmidt I, Sliekers O, Schmid M et al (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27(4):481–492. doi: 10.1016/S0168-6445(03)00039-1 PubMedCrossRefGoogle Scholar
  31. Shieh WY, Lin YT, Jean WD (2004) Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54:2307–2312. doi: 10.1099/ijs.0.63107-0 PubMedCrossRefGoogle Scholar
  32. Shooner F, Bousquet J, Tyagi RD (1996) Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int J Syst Bacteriol 46(2):409–415PubMedCrossRefGoogle Scholar
  33. Sorokin DY, Tourova TP, Braker G et al (2007) Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57:1582–1589. doi: 10.1099/ijs.0.65112-0 PubMedCrossRefGoogle Scholar
  34. Takaki K, Fushinobu S, Kim SW et al (2008) Streptomyces griseus enhances denitrification by Ralstonia pickettii K50, which is possibly mediated by histidine produced during co-culture. Biosci Biotechnol Biochem 72(1):163–170. doi: 10.1271/bbb.70528 PubMedCrossRefGoogle Scholar
  35. Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170. doi: 10.1196/annals.1419.000 PubMedCrossRefGoogle Scholar
  36. Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. doi: 10.1093/nar/25.24.4876 PubMedCrossRefGoogle Scholar
  37. Thomsen TR, Kong Y, Nielsen PH (2007) Ecophysiology of abundant denitrifying bacteria inactivated sludge. FEMS Microbiol Ecol 60(3):370–382. doi: 10.1111/j.1574-6941.2007.00309.x PubMedCrossRefGoogle Scholar
  38. Van de Pas-Schoonen KT, Schalk-Otte S, Haaijer S et al (2005) Complete conversion of nitrate into dinitrogen gas in co-cultures of denitrifying bacteria. Biochem Soc Trans 33:205–209. doi: 10.1042/BST0330205 PubMedCrossRefGoogle Scholar
  39. Wang CC, Lee CM (2007) Isolation of the ε-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile–butadiene–styrene resin. J Hazard Mater 145(1–2):136–141. doi: 10.1016/j.jhazmat.2006.10.092 PubMedCrossRefGoogle Scholar
  40. Wang G, Skipper HD (2004) Identification of denitrifying rhizobacteria from bentgrass and bermudagrass golf greens. J Appl Microbiol 97(4):827–837. doi: 10.1111/j.1365-2672.2004.02368.x PubMedCrossRefGoogle Scholar
  41. Watsuji TO, Takaya N, Nakamura A, Shoun H (2003) Denitrification of nitrate by the fungus Cylindrocarpon tonkinense. Biosci Biotechnol Biochem 67(5):1115–1120. doi: 10.1271/bbb.67.1115 PubMedCrossRefGoogle Scholar
  42. Wilson KH, Blitchington RB, Greene RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28(9):1942–1946PubMedGoogle Scholar
  43. Yoshie S, Noda N, Tsuneda S et al (2004) Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems. Appl Environ Microbiol 70(5):3152–3157. doi: 10.1128/AEM.70.5.3152-3157.2004 PubMedCrossRefGoogle Scholar
  44. Zhou Z, Takaya N, Nakamura A et al (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277(3):1826–1892. doi: 10.1074/jbc.M109096200 CrossRefGoogle Scholar
  45. Zhu G, Peng Y, Li B et al (2008) Biological removal of nitrogen from wastewater. Rev Environ Contam Toxicol 192:159–195. doi: 10.1007/978-0-387-71724-1_5 PubMedCrossRefGoogle Scholar
  46. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61(4):533–616PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations