Skip to main content
Log in

TNT biodegradation and production of dihydroxylamino-nitrotoluene by aerobic TNT degrader Pseudomonas sp. strain TM15 in an anoxic environment

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Anaerobic bacteria have been used to produce 2,4-dihydroxylamino-nitrotoluene (2,4DHANT), a reductive metabolite of 2,4,6-trinitrotoluene (TNT). Here, an aerobic TNT biodegrader Pseudomonas sp. strain TM15 produced 2,4DHANT as evidenced by the molecular ion with m/z of 199 identified from LC-TOFMS analyses. TNT biodegradation with a high cell concentration (109 cells/ml) led to a significant accumulation of 2,4DHANT in the culture medium, as well as hydroxylamino-dinitrotoluenes (HADNTs), although these products were not accumulated when a low cell concentration was used; also, the accumulation of diamino-nitrotoluene and of an unidentified metabolite were observed in the culture medium with the high cell concentration (1010 cells/ml). 2,4DHANT overproduction was a function of the aeration speed since cultures with low aeration speeds (30 rpm) had a 19-fold higher DHANT productivity than those aerated with high speeds (180 rpm); this indicates that molecular oxygen was related to the formation of 2,4DHANT. The quantification of dissolved oxygen (DO) in the media demonstrated that the productivity of 2,4DHANT was increased at low DO values. Moreover, supplying oxygen to the culture media produced a remarkable decrease of 2,4DHANT accumulation; these results clearly indicate that high 2,4DHANT production was a consequence of the oxygen deficit in the culture medium. This finding is useful for understanding the TNT biodegradation (bioremediation technology) in an anoxic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahlborg G Jr, Einisto P, Sorsa M (1988) Mutagenic activity and metabolites in the urine of workers exposed to trinitrotoluene (TNT). Br J Ind Med 45:353–358

    PubMed  CAS  Google Scholar 

  • Ahmad F, Hughes JB (2002) Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids. Environ Sci Technol 36:4370–4381

    Article  PubMed  CAS  Google Scholar 

  • Banerjee H, Hawkins Z, Dutta S, Smoot D (2003) Effects of 2-amino-4,6-dinitrotoluene on p53 tumor suppressor gene expression. Mol Cell Biochem 252:387–389

    Article  PubMed  CAS  Google Scholar 

  • Barrows SE, Cramer CJ, Truhlar DG, Elovitz MS, Weber EJ (1996) Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environ Sci Technol 30:3028–3038

    Article  CAS  Google Scholar 

  • Berthe-Corti L, Jacobi H, Kleihauer S, Witte I (1998) Cytotoxicity and mutagenicity of a 2,4,6-trinitrotoluene (TNT) and hexogen contaminated soil in S. typhimurium and mammalian cells. Chemosphere 37:209–218

    Article  PubMed  CAS  Google Scholar 

  • Borch T, Inskeep WP, Harwood JA, Gerlach R (2005) Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium. Environ Sci Technol 39:7126–7133

    Article  PubMed  CAS  Google Scholar 

  • Chen WS, Juan CN, Wei KM (2005) Mineralization of dinitrotoluenes and trinitrotoluene of spent acid in toluene nitration process by Fenton oxidation. Chemosphere 60:1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352, table of contents

    Article  PubMed  CAS  Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671

    PubMed  CAS  Google Scholar 

  • Fiorella PD, Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007–2015

    PubMed  CAS  Google Scholar 

  • Fleischmann TJ, Walker KC, Spain JC, Hughes JB, Morrie Craig A (2004) Anaerobic transformation of 2,4,6-TNT by bovine ruminal microbes. Biochem Biophys Res Commun 314:957–963

    Article  PubMed  CAS  Google Scholar 

  • Haidour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370

    Article  CAS  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  PubMed  CAS  Google Scholar 

  • Harter DR (1985) The use and importance of nitroaromatic compounds in the chemical industry. In: Rickert DE (ed). Hemisphere publishing, Washington, DC

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  PubMed  CAS  Google Scholar 

  • Heiss G, Knackmuss HJ (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287

    Article  PubMed  CAS  Google Scholar 

  • Homma-Takeda S, Hiraku Y, Ohkuma Y, Oikawa S, Murata M, Ogawa K, Iwamuro T, Li S, Sun GF, Kumagai Y, Shimojo N, Kawanishi S (2002) 2,4,6-trinitrotoluene-induced reproductive toxicity via oxidative DNA damage by its metabolite. Free Radic Res 36:555–566

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478

    Article  PubMed  CAS  Google Scholar 

  • Kroger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248

    Article  PubMed  Google Scholar 

  • Letzel S, Goen T, Bader M, Angerer J, Kraus T (2003) Exposure to nitroaromatic explosives and health effects during disposal of military waste. Occup Environ Med 60:483–488

    Article  PubMed  CAS  Google Scholar 

  • Leungsakul T, Keenan BG, Smets BF, Wood TK (2005) TNT and nitroaromatic compounds are chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. strain DNT. Appl Microbiol Biotechnol 69:321–325

    Article  PubMed  CAS  Google Scholar 

  • Lewis TA, Goszczynski S, Crawford RL, Korus RA, Admassu W (1996) Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62:4669–4674

    PubMed  CAS  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70:291–307

    Article  PubMed  Google Scholar 

  • Liou MJ, Lu MC, Chen JN (2004) Oxidation of TNT by photo-Fenton process. Chemosphere 57:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Kadokami K, Ogawa HI (2006a) Characterization of 2,4,6-trinitrotoluene (TNT)-metabolizing bacteria isolated from TNT-polluted soils in the Yamada Green Zone, Kitakyushu, Japan. J Environ Biotechnol 6:33–39

    Google Scholar 

  • Maeda T, Kubota A, Nagafuchi N, Kadokami K, Ogawa HI (2006b) Crucial problem in rapid spectrophotometric determination of 2,4,6-trinitrotoluene and its breakthrough method. J Microbiol Methods 66:568–571

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Nagafuchi N, Kubota A, Kadokami K, Ogawa HI (2006c) One-step isolation and identification of hydroxylamino-dinitrotoluenes, unstable products from 2,4,6-trinitrotoluene metabolites, with thin-layer chromatography and laser time-of-flight mass spectrometry. J Chromatogr Sci 44:96–100

    PubMed  CAS  Google Scholar 

  • Maeda T, Nagafuchi N, Kubota A, Kadokami K, Ogawa HI (2007a) Identification of spontaneous conversion products of unstable 2,4,6-trinitrotoluene metabolites, hydroxylamino-dinitrotoluenes, by combination of thin-layer chromatography and laser time-of-flight mass spectrometry. J Chromatogr Sci 45:345–349

    PubMed  CAS  Google Scholar 

  • Maeda T, Nakamura R, Kadokami K, Ogawa HI (2007b) Relationship between mutagenicity and reactivity or biodegradability for nitroaromatic compounds. Environ Toxicol Chem 26:237–241

    Article  PubMed  CAS  Google Scholar 

  • Newcombe DA, Crawford RL (2007) Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils. Biodegradation 18:741–754

    Article  PubMed  CAS  Google Scholar 

  • Nishino SF, Spain JC (1993) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol 59:2520–2525

    PubMed  CAS  Google Scholar 

  • Padda RS, Wang C, Hughes JB, Kutty R, Bennett GN (2003) Mutagenicity of nitroaromatic degradation compounds. Environ Toxicol Chem 22:2293–2297

    Article  PubMed  CAS  Google Scholar 

  • Rieger P-G, Knackmuss H-J (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed). Plenum Press, New York, NY

  • Saka M (2004) Developmental toxicity of p,p′-dichlorodiphenyltrichloroethane, 2,4,6-trinitrotoluene, their metabolites, and benzo[a]pyrene in Xenopus laevis embryos. Environ Toxicol Chem 23:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning, A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Snellinx Z, Nepovim A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res Int 9:48–61

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Iemitsu M, Shimojo N, Miyauchi T, Amamiya M, Sumi D, Hayashi T, Sun G, Shimojo N, Kumagai Y (2005) 2,4,6-Trinitrotoluene inhibits endothelial nitric oxide synthase activity and elevates blood pressure in rats. Arch Toxicol 79:705–710

    Article  PubMed  CAS  Google Scholar 

  • Tan EL, Ho CH, Griest WH, Tyndall RL (1992) Mutagenicity of trinitrotoluene and its metabolites formed during composting. J Toxicol Environ Health 36:165–175

    Article  PubMed  CAS  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252

    PubMed  CAS  Google Scholar 

  • Won WD, DiSalvo LH, Ng J (1976) Toxicity and mutagenicity of 2,4,-6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol 31:576–580

    PubMed  CAS  Google Scholar 

  • Yin H, Wood TK, Smets BF (2005) Reductive transformation of TNT by Escherichia coli: pathway description. Appl Microbiol Biotechnol 67:397–404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Chugoku Kayaku Co. Ltd., Hiroshima, Japan, for their gift of 2,4,6-trinitrotoluene, and to Dr. R. Spanggord, Chemical Sciences and Technology Department, SRI International, Melno Park, CA, for his gift of 2-hydroxylamino-4,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotolulene, and 2,4-diamino-nitrotoluene. We express much gratitude to Dr. Robin Gerlach, Montana State University, Bozeman, MT, for his help in identifying 2,4-dihydroxylamino-6-nitrotoluene, to Dr. Hideaki Uchida and Dr. Yoshizumi Takigawa, Agilent Technologies Japan, Ltd., for their support with LC/TOF–MS, and to Dr. Norikazu Nishino, Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, for his support with the LC/MS analyses. We are also grateful for the assistance of Dr. Thomas K. Wood of Texas A & M University, College Station, TX, for his kind helps with preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinari Maeda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, A., Maeda, T., Nagafuchi, N. et al. TNT biodegradation and production of dihydroxylamino-nitrotoluene by aerobic TNT degrader Pseudomonas sp. strain TM15 in an anoxic environment. Biodegradation 19, 795–805 (2008). https://doi.org/10.1007/s10532-008-9182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9182-6

Keywords

Navigation