Advertisement

Biodegradation

, Volume 19, Issue 4, pp 599–611 | Cite as

Description of by-product inhibiton effects on biodesulfurization of dibenzothiophene in biphasic media

  • Ainhoa Caro
  • Karina Boltes
  • Pedro Letón
  • Eloy García-Calvo
Original Paper

Abstract

As several authors have reported previously, the Biodesulfurization of hydrodesulfurization recalcitrants, such as dibenzothiophene, is not yet commercially viable because mass transfer limitations and feedback inhibition effects are produced during the conversion. This work has been focused to investigate the inhibition process in aqueous and oil-water systems with two different aerobic biocatalysts types, Rhodococcus erythropolis IGTS8 and Pseudomonas putida CECT 5279. The results obtained have proven that global DBT desulfurization process using CECT 5279 was not clearly deactivated due to final product accumulation, under the experimental conditions assayed. Consistently, the desulfurization pattern has been described with the Michaelis-Menten equation, determining the kinetic parameters. On other hand, the assays have shown that important mass transfer limitations produced the decrease of the yields obtained with this Gram strain in biphasic media. With strain IGTS8 it was observed lower mass transfer problems, but contrary the reaction was severely affected by the final product accumulation, in both aqueous and biphasic systems. Therefore it has been proposed an enzymatic kinetic model with competitive inhibition to describe the BDS evolution pattern when this Gram+ strain was used.

Keywords

Biodesulfurization Dibenzothiophene Inhibition Kinetic model Pseudomonas sp. CECT 5279 Rhodococcus sp. IGTS8 

Nomenclature

BDS

Biodesulfurization

C

Concentration (μM)

DBT

Dibenzothiophene

DBTO

DBT-sulfoxide

DBTO2

DBT-sulfone

DC

Dry cell

HBP

2-hydroxybiphenyl

HBPSi

2′-hydroxybephenyl-2-sulfinate

HDS

Hydrodesulfurization

I

Inhibitor concentration (μM of HBP)

K

Kinetic constant (μM)

P

Product (HBP) concentration (μM)

qS

Specific substrate consume rate (mmol substrate·KgDC−1 h−1)

S

Substrate concentration (μM)

X

Biomass concentration (g DC L−1)

XBDS

Biodesulfurization percentage (%)

y

Fitting model parameter

Subindexes

i

Intermediate

I

Inhibition over main substrate

I′

Inhibition over intermediate substrate

max

Maximum

r

Remove

S

Substrate, saturation

Notes

Acknowledgements

This work has been supported by MEC-Plan Nacional de I + D-Programa de Ciencia y Tecnología Química, under contract no. CTQ2004-06553-C02-02.

References

  1. Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enz Microbiol Technol 32(3–4):446–454CrossRefGoogle Scholar
  2. Alcon A, Santos VE, Martin AB, Yustos P, García-Ochoa F (2005) Biodesulfurisation of DBT with Pseudomonas putida CECT5279 by resting cells: influence of cell growth time on reducing equivalent concentration and HpaC activity. Biochem Eng J 26:168–175CrossRefGoogle Scholar
  3. Caro A, Boltes K, Letón P, Garcia-Calvo E (2007) Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35(2):191–197CrossRefGoogle Scholar
  4. Chang JH, Chang YK, Ryu HW, Chang HN (2000) Desulfurization of ligth gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiol Lett 182:309–312CrossRefGoogle Scholar
  5. Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M, Yu B, Xu P (2006) The surfactant Tween 80 enhances biodesulfurization. Appl Environ Microbiol 72(11):7390–7393CrossRefGoogle Scholar
  6. Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36CrossRefGoogle Scholar
  7. Gallardo ME, Ferrandez A, De Lorenzo V, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160Google Scholar
  8. Gray KA, Pogrebinsky OS, Mrachko T, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709CrossRefGoogle Scholar
  9. Guchhait S, Biswas D, Bhattacharya P, Chowdhury R (2005) Bio-desulfurization of model organo-sulfur compounds and hydrotreated diesel- Experiments and modelling. Chem Eng J 112:145–151CrossRefGoogle Scholar
  10. Guobin S, Huaiying Z, Jianmin X, Guo C, Wangliang L, Huizhou L (2006) Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture. Biochem Eng J 27(3):305–309CrossRefGoogle Scholar
  11. H del Olmo C, Alcon A, Santos VE, García-Ochoa F (2005a) Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of media composition. Enz Microbiol Technol 37:157–166Google Scholar
  12. H del Olmo, C, E Santos, V, Alcon, A, García-Ochoa, F (2005b) Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem Eng J 22:229–237Google Scholar
  13. Honda H, Sugiyama H, Saito I, Kobayashi T (1998) High cell density culture of Rhodococcus rhodochrous by pH-stat feeding and dibenzothiophene degradation. J Ferment Bioeng 85(3):334–338CrossRefGoogle Scholar
  14. Jia X, Wen J Sun Z, Caiyin Q, Xie S (2006) Modelling of DBT biodegradation behaviors by resting cells of Gordonia sp. WQ-01 and its mutant in oil-water dispersions. Chem Eng Sci 61(6):1987–2000CrossRefGoogle Scholar
  15. Kilbane II JJ (2006) Microbial biocatalyst development to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314Google Scholar
  16. Kilbane JJ, Jackowski K (1992) Biodesulfurization of water soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:1107–1114CrossRefGoogle Scholar
  17. Kobayashi M, Horiuchi K, Yoshikawa O, Hirasawa K, Ishii Y, Fujino K (2001) Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Biosci Biotechnol Biochem 65(2):298–304CrossRefGoogle Scholar
  18. Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63(8):3164–3169Google Scholar
  19. Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169CrossRefGoogle Scholar
  20. Luo MF, Xing JM, Gou ZX, Li S, Liu HZ, Chen JY (2002) Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem Eng J 13(1):1–6CrossRefGoogle Scholar
  21. Maghsoudi S, Vossoughi M, Kheirolomoom A, Tanaka E, Katoh S (2001) Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem Eng J 8:151–156CrossRefGoogle Scholar
  22. Martin AB, Alcón A, Santos VE, García-Ochoa F (2004) Production of a biocatalyst of Pseudomonas putida CECT5279 for Dibenzothiophene (DBT) Biodesulfurization for different media composition. Energy Fuels 18:851–857CrossRefGoogle Scholar
  23. McFarland BL (1999) Biodesulfurization. Curr Opin Microbiol 2:257–264CrossRefGoogle Scholar
  24. Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. Chemtec 28:38–45Google Scholar
  25. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Microbiol 11:540–546Google Scholar
  26. Monticello DJ, Finnerty WR (1985) Microbial desulfurization of fossil fuels. Ann Rev Microbiol 39:371–389CrossRefGoogle Scholar
  27. Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63(1):1–9CrossRefGoogle Scholar
  28. Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344CrossRefGoogle Scholar
  29. Ohshiro T, Hirata T, Hashimoto I, Izumi Y (1996) Characterization of DBT desulfurization reaction by whole cells of Rhodococcus erythropolis H-2 in the presence of hydrocarbon. J Ferment Bioeng 82(6):610–612CrossRefGoogle Scholar
  30. Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kina K, Kirimura K (2005) DBT desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100(3):266–273CrossRefGoogle Scholar
  31. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiol 143:2961–2973CrossRefGoogle Scholar
  32. Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulfurisation of benzothiophene and dibenzothiophene by actinomicete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhock 74:119–132CrossRefGoogle Scholar
  33. Olson E, Stanley D, Gallagher J (1993) Characterization of intermediates in the microbial desulfurization of dibenzothiophene. Energy Fuels 7:159–164CrossRefGoogle Scholar
  34. Omori T, Monna L, Saiki Y, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY-1. Appl Environ Microbiol 58:911–915Google Scholar
  35. Rashtchi M, Mohebali GH, Akbarnejad MM, Towfighi J, Rasekh B, Keytash A (2006) Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochem Eng J 29(3):169–173Google Scholar
  36. Takada M, Nomura N, Okada H, Nakajima-Kambe T, Nakahara T, Uchiyama H (2005) De-repression and comparison of oil watr seperation activity of the dibenzothiophene desulfurizing bacterium, Mycobacterium sp. G3. Biotechnol Lett 27:871–874 CrossRefGoogle Scholar
  37. Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic system containing organic solvents. Appl Environ Microbiol 72(7):4604–4609CrossRefGoogle Scholar
  38. Wang P, Humphrey AE, Krawiec S (1996) Kinetic analyses of desulfurization of dibenzothiophene by Rhodococcus erythropolis in continuous cultures. Appl Environ Microbiol 62(8):3066–3068Google Scholar
  39. Watkins LM, Rodriguez R, Schneider D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT (2003) Purification and characterization of the aromatic desulfinase, 2-(2′-hydroxyphenyl)benzenesulfinate desulfinase. Arch Biochem Biophys 415:14–23CrossRefGoogle Scholar
  40. Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulphur, nitrogen and oxygen heterocycles. Trends Microbiol 14(9):398–405CrossRefGoogle Scholar
  41. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O (2000) Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci Bioeng 89(4):361–366CrossRefGoogle Scholar
  42. Yang J, Marison IW (2005) Two-stage process design for the biodesulphurisation of a model diesel by a newly isolated Rhodococcus globerulus DAQ3. Biochem Eng J 27:77–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ainhoa Caro
    • 1
  • Karina Boltes
    • 1
  • Pedro Letón
    • 1
  • Eloy García-Calvo
    • 1
  1. 1.Dpto. Química Analítica e Ingeniería Química, Facultad de CienciasUniversidad de AlcaláMadridSpain

Personalised recommendations