, Volume 18, Issue 4, pp 413–425 | Cite as

Combined biological–chemical procedure for the mineralization of TNT

  • Mario Kröger
  • Gregor Fels
Original Paper


Contamination of ground and surface water with 2,4,6-trinitrotoluene (TNT) and its biological and chemical transformation products are a persisting problem at former TNT production sites. We have investigated the photochemical degradation of TNT and its aminodinitro-(ADNT) and diaminonitrotoluene (DANT) metabolites using OH-radical generating systems like Fenton and hydrogen peroxide irradiated with UV, in order to compare the degradation and mineralization rate of ADNT- and DANT-isomers with TNT itself. As a result, we find that the aminoderivatives were mineralized much faster than TNT. Consequently, as ADNTs and DANTs are the known dead-end products of biological TNT degradations, we have combined our photochemical procedure with a preceding biological treatment of TNT by a mixed culture from sludge of a sewage plant. This consecutive degradation procedure, however, shows a reduced mineralization rate of the ADNTa and DANTs in the biologically derived supernatant as compared to the pure substances, suggesting that during the biological TNT treatment by sludge competing substrates are released into the solution, and that a more defined biological procedure would be necessary in order to achieve an effective, ecologically and economically acceptable mineralization of TNT from aqueous systems.


ADNT  Biological degradation Chemical degradation DANT Radioactivity  TNT 


  1. Baker A, Spencer RG (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232CrossRefGoogle Scholar
  2. Bruns-Nagel D, Breitung J, Steinbach K, Gemsa D, von Low E, Gorontzy T, Blotevogel KH (1997) Bioremediation of 2,4,6-trinitrotoluene-contaminated soil by anaerobic/aerobic and aerobic methods. In: Alleman BC, Leeson A (Eds) In situ and On-Site Bioremediation, 9–14Google Scholar
  3. Burlinson N, Sitzmann M, Kaplan L, Kayser E (1979) Photochemical generation of the 2,4,6-trinitrobenzyl anion. J Org Chem 44:3695–3698CrossRefGoogle Scholar
  4. Carey JH (1992) An introduction to advanced oxidation processes (AOP) for destruction of organics in wastewater. Water Pollut Res J Can 27:1–21Google Scholar
  5. Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuß J, König H (2006). Bacterial elimination of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation (in press)Google Scholar
  6. Crawford RL (1995) The microbiology and treatment of nitroaromatic compounds. Curr Opin Biotechnol 6:329–336CrossRefGoogle Scholar
  7. Dillert R, Siebers U, Renwrantz A, Bahnemann D (1997) Oxidation von Nitro- und Aminoaromaten mit Wasserstoffperoxid. Verbundvorhaben biologische Sanierung von Rüstungsaltlasten, Tagungsband zum 3 Statusseminar am 26 und 27 02 in Berlin (Hrsg: Umweltbundesamt), BMBF, Bonn Kapitel GGoogle Scholar
  8. Ederer M, Lewis TA, Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by Clostidia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:75–80CrossRefGoogle Scholar
  9. Edwards JO, Curci R (1992) Fenton type activation and chemistry of hydroxyl radical. In: Strukul G (Ed) Catalytic oxidations with hydrogen peroxide. Kluwer Academic Publishers, DordrechtGoogle Scholar
  10. Eilers A, Rüngeling E, Stuendl UM, Gottschalk G (1999) Metabolism of TNT by the white-rot fungus bjerkanda dausta dsm 3375 depends on cytochrome p 450. Appl Microbiol Biotechnol 53:75–80CrossRefGoogle Scholar
  11. Emmrich M (1999) Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils. Environ Sci Technol 33:3802–3805CrossRefGoogle Scholar
  12. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 335–352Google Scholar
  13. Fukushima M, Tatsumi K, Nagao S (2001) Degradation characteristics of humic acids during photo-Fenton processes. Environ Sci Technol 35:3683–3690CrossRefGoogle Scholar
  14. Glover DJ, Hoffsommer JC, Kubose DA, (1977) Anal Chim Acta 88: 381–384Google Scholar
  15. Hampton ML, Sisk WE (1997) Environmental stability of windrow composting of explosives-contaminated soils. In: Tedder DW (Ed) Emerging Technologies in Hazardous Waste Management IX, Division of Industrial and Engineering Chemistry, 252–257Google Scholar
  16. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618CrossRefGoogle Scholar
  17. Heiss G, Knackmuss HJ (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287CrossRefGoogle Scholar
  18. Hess TF, Lewis TA, Crawford RL, Katamneni S, Wells JH, Watts RJ (1998) Combined photocatalytic and fungal treatment for the destruction of 2,4,6-trinitrotoluene (TNT). Wat Res 32:1481–1491CrossRefGoogle Scholar
  19. Hess TF, Schrader PS (2002) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT). J Environ Qual 31:736–744Google Scholar
  20. Ho PC (1986) Photooxidation of 2,4-dinitrotoluene in the presence of hydrogen peroxide. Environ Sci Technol 20:260–267CrossRefGoogle Scholar
  21. Hofrichter M, Scheibner K, Schneegaβ I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from nematoloma frowardii. Appl Environ Microbiol 64:399–404Google Scholar
  22. Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6-trinitrotuene and its metabolites. Ecotox Environ Safety 35:282–287CrossRefGoogle Scholar
  23. Hwang HM, Slaughter LF, Cook SM, Cui H (2000a) Degradation of TNT in a freshwater environment. Bull Environ Contam Toxicol 65:228–235CrossRefGoogle Scholar
  24. Hwang HM, Slaughter LF, Cook SM, Cui H (2000b) Photochemical and microbial degradation of 2,4,6-trinitrotoluene (TNT) in a freshwater environment. Bull Environ Contam Toxicol 65:228–235CrossRefGoogle Scholar
  25. Kearney PC, Zeng Q, Ruth JM (1983) Oxidative pretreatment accelerates TNT metabolism in soils. Chemosphere 12:1583–1597CrossRefGoogle Scholar
  26. Kröger M, Fels G (2000) 14C-TNT synthesis reinvestigated. J Label Compds Radiopharm 43:217–227CrossRefGoogle Scholar
  27. Kröger M, Fels G (2002) Microbiotic synthesis of 14C-ringlabelled aminodinitrotoluenes (ADNT) and diaminonitrotoluenes (DANT). J Label Compds Radiopharm 45:249–255CrossRefGoogle Scholar
  28. Kröger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248CrossRefGoogle Scholar
  29. Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutout S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39Google Scholar
  30. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698CrossRefGoogle Scholar
  31. Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmus HJ (Eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp. 91–126Google Scholar
  32. Lewis TA, Crawford RL, Katamneni S, Wells JH, Watts, RJ, Hess TF (1998) Wat Res 32:1481–1491Google Scholar
  33. Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Managem 70:291–307CrossRefGoogle Scholar
  34. Li AZ, Marx KA, Walker J, Kaplan DL (1997) Trinitrotoluene and metabolites binding to humic acid. Environ Sci Technol 31:584–589CrossRefGoogle Scholar
  35. Li ZM, Comfort SD, Shea PJ (1997) Destruction of 2,4,6-trinitrotoluene by Fenton oxidation. J Environ Qual 26:480–487Google Scholar
  36. Li ZM, Shea PJ, Comfort SD (1998) Nitrotoluene destruction by UV-catalyzed Fenton oxidation. Chemosphere 36:1849–1865CrossRefGoogle Scholar
  37. Lindsey ME, Tarr MA (2000) Inhibition of hydroxyl radical reaction with aromatics by dissolved organic matter. Environ Sci Technol 34:444–449CrossRefGoogle Scholar
  38. Liou MJ, Lu MC, Chen JN (2003) Oxidation of explosives by Fenton and photo-Fenton processes. Wat Res 37:3172–3179CrossRefGoogle Scholar
  39. Makarova O, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797–4803CrossRefGoogle Scholar
  40. Martinetz D, Rippen G (1990) TNT. In: Rippen, G (Ed), Handbuch Umweltchemikalien ecomed, Landsberg/LechGoogle Scholar
  41. Nahen M, Bahnemann R, Dillert R, Fels G (1997) Photocatalytc degradation of TNT: Reductive and oxidative pathways. J Photochem Photobiol A: Chemistry 110:191–199CrossRefGoogle Scholar
  42. Popesku JT, Singh A, Zhao JS, Hawari J, Ward OP (2004) Metabolite production during transformation of 2,4,6-trinitrotoluene (TNT) by a mixed culture acclimated and maintained on crude oil-containing media. Appl Microbiol Biotechnol 65:739–746CrossRefGoogle Scholar
  43. Preuss J, Eitelberg F (1999) Hallschlag-ISBN 3-88250-045-X (Erhältlich beim Geographischen Institut der Universität Mainz, Saarstr 21, 55121 Mainz)Google Scholar
  44. Rieger PG, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. Spain JC (Ed) Biodegradation of Nitroaromatic Compounds, 1–18Google Scholar
  45. Robidoux PY, Svendsen C, Sarrazin MST, Ampleman G, Hawari J, Weeks JM, Sunahara GI (2005) Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Arch Environ Contam Toxicol 48:56–67CrossRefGoogle Scholar
  46. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Wat Res 35:2101–2111CrossRefGoogle Scholar
  47. Scheibner K, Hofrichter M, Herre A, Michels J (1997) Screening for fungi intensively mineralizing TNT. Appl Microbiol Biotechnol 47:452–457CrossRefGoogle Scholar
  48. Schmelling DC, Gray KA, Kamat PV (1997) The influence of solution matrix on the photocatalytic degradation of TNT in TiO2 slurries. Wat Res 31:1439–1447CrossRefGoogle Scholar
  49. Schmidt A, Butte W (1999) Photocatalytic degradation of reduction products of TNT. Chemosphere 38:1293–1298CrossRefGoogle Scholar
  50. Schrader PS, Hess TF (2004) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry. J Environ Qual 33:1202–1209CrossRefGoogle Scholar
  51. Simjouw JP, Minor EC, Mopper K (2005) Isolation and characterization of estuarine dissolved organic matter: Comparison of ultrafiltration and C-18 solid-phase extraction techniques. Marine Chem 96:219–235CrossRefGoogle Scholar
  52. Son HS, Lee SJ, Cho IH, Zoh KD (2004) Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Chemosphere 57:309–317CrossRefGoogle Scholar
  53. Spanggord RJ, Yao D, Mill T (2000) Kinetics of aminodinitrotoluene oxidations with ozone and hydroxyl radical. Environ Sci Technol 34:450–454CrossRefGoogle Scholar
  54. Szöcs A (1998). Geoökologische Systemanalyse und Bestimmung der Nitroaromaten-Mobilität auf dem großflächigen Rüstungsaltstandort Stadtallendorf bei Marburg. Diss FB Geowiss Uni Mainz Google Scholar
  55. Thorn KA, Thorne PG, Cox LG (2004) Alkaline hydrolysis/polymerization of 2,4,6-trinitrotoluene: Characterization of products by 13C- and 15N-NMR. Environ Sci Technol 38:2224–2231CrossRefGoogle Scholar
  56. Yin H, Wood TK, Smets BF (2005) Reductive transformation of TNT by Escherichia coli: pathway description. Appl Microbiol Biotechnol 67:397–404CrossRefGoogle Scholar
  57. Zaripov SA, Naumov AV, Suvorova ES, Garusov AV, Naumova RP (2004) Initial Stages of 2,4,6-Trinitrotoluene Transformation by Microorganisms. Microbiol 73:398–403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Freudenberg Forschungsdienste KGElastomereGermany
  2. 2.Faculty of Science, Department of ChemistryUniversity of PaderbornPaderbornGermany

Personalised recommendations