, Volume 18, Issue 2, pp 233–245 | Cite as

Contribution to the Detection and Identification of Oxidation Metabolites of Nonylphenol in Sphingomonas sp. strain TTNP3

  • P. F. X. Corvini
  • R. Meesters
  • M. Mundt
  • A. Schäffer
  • B. Schmidt
  • H. -Fr. Schröder
  • W. Verstraete
  • R. Vinken
  • J. Hollender
Original paper


Sphingomonas sp. strain TTNP3 has been previously described as a bacterium that is capable of degrading the technical mixture of nonylphenol (NP) isomers and also the 4(3′,5′-dimethyl-3′-heptyl)-phenol single isomer of NP. Until recently, 3,5-dimethyl-3-heptanol was the only reported metabolite of 4(3′,5′-dimethyl-3′-heptyl)-phenol. A short time ago, the detection of an intracellular metabolite resulting from the oxidation of 4(3′,5′-dimethyl-3′-heptyl)-phenol which was identified as 2(3,5-dimethyl-3-heptyl)-benzenediol has been reported. A decisive element for this identification was the occurrence of some slight differences with the two most probable metabolites i.e. 4(3′,5′-dimethyl-3′-heptyl)-resorcinol and 4(3′,5′-dimethyl-3′-heptyl)-catechol. These facts led us to hypothesise some NIH shift mechanisms explaining the formation of 2(3′,5′-dimethyl-3′-heptyl)-benzenediol. In the present work, we describe the steps that led to the detection of these metabolites in the intracellular fraction of Sphingomonas sp. strain TTNP3. The formation of analogous intracellular metabolites resulting from the degradation of the technical mixture of NP is reported. To further elucidate these degradation products, studies were carried out with cells grown with 4(3′,5′-dimethyl-3′-heptyl)-phenol as sole carbon source. The description of the syntheses of reference compounds, i.e. 4(3′,5′-dimethyl-3′-heptyl)-resorcinol and 4(3′,5′-dimethyl-3′-heptyl)-catechol and their comparative analyses with the intermediates of the degradation of 4(3′,5′-dimethyl-3′-heptyl)-phenol are presented.


4(3′,5′-Dimethyl-3′-heptyl)-phenol Branched isomer Metabolites Nonylphenol Oxidation Sphingomonas 



collision-induced dissociation






4(3′,5′-dimethyl-3′-heptyl)-phenol (nonylphenol)




technical nonylphenol


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank Dr J. Runsink and Mrs A. Müller for measurement of the NMR spectra at the Institute for Organic Chemistry and Maike Meindorf for her technical support. The work of LabMET was made possible by a grant from the FWO (Flemish Fund Scientific Research) n° G.0102.00N.


  1. Bokern M, Nimtz M, Harms HH (1996) Metabolites of 4-n-nonylphenol in wheat cell suspension cultures. J␣Agric Food Chem 44:1123–1127CrossRefGoogle Scholar
  2. Corti A, Frassinetti S, Vallini G, D’Antone S, Fichi C,␣Solaro R (1995) Biotransformation of nonionic surfactants. I. Biotransformation of 4-(1-nonyl)phenol by Candida maltosa isolate. Environ Pollut 90:83–87CrossRefGoogle Scholar
  3. Corvini PFX, Vinken R, Hommes G, Schmidt B, Dohmann M (2004a) Degradation of the radioactive and non-labelled branched 3′,5′-dimethyl 3′-heptyl-phenol nonylphenol isomer by Sphingomonas TTNP3. Biodegradation 15:9–18CrossRefGoogle Scholar
  4. Corvini PFX, Vinken R, Hommes G, Mundt M, Meesters R, Schröder HF, Hollender J, Schmidt B (2004b) Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas TTNP3. Water Sci Technol 50:195–202Google Scholar
  5. Corvini PFX, Meesters RJW, Schäffer A, Schröder HFr, Vinken R, Hollender J (2004c) Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl Environ Microbiol 70:6897–6900CrossRefGoogle Scholar
  6. Dachs J, Van Ry DA, Eisenreich SJ (1999) Occurrence of estrogenic nonylphenols in the urban and coastal atmosphere of the lower Hudson River estuary. Environ Sci Technol 33:2676–2679CrossRefGoogle Scholar
  7. Di Corcia A, Costantino A, Crescenzi C, Marinoni E, Samperi R (1998) Characterization of recalcitrant intermediates of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environ Sci Technol 32:2401–2409CrossRefGoogle Scholar
  8. Ekelund R, Granmo Å, Magnusson K, Berggren M (1993) Biodegradation of 4-nonylphenol in seawater and sediment. Environ Pollut 79:59–61CrossRefGoogle Scholar
  9. Espadaler I, Caixach J, Om J, Ventura F, Cortina M, Pauné F, Rivera J (1997) Identification of organic pollutants in Ter river and its system of reservoirs supplying water to Barcelona (Catalonia, Spain): a study by GC/MS and FAB/MS. Water Res 31:1996–2004CrossRefGoogle Scholar
  10. Fereira-Leach AMR, Hill EM (2001) Bioconcentration and distribution of 4-tert-octylphenol residues in tissues of the rainbow trout (Oncorhynchus mykiss). Mar Environ Res 51:75–89CrossRefGoogle Scholar
  11. Fujii K, Urano N, Ushio H, Satomi M, Iida H, Ushio-Sata N, Kimura S (2000) Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem 128:909–916Google Scholar
  12. Fujii K, Urano N, Ushio H, Satomi M, Kimura S (2001) Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol 51:603–610Google Scholar
  13. Giger W, Ahel M, Koch M, Laubscher HU, Schaffner C, Schneider J (1987) Behaviour of alkylphenolpolyethoxylate surfactants and of nitrilotriacetate in sewage treatment. Water Sci Technol 19:449–460Google Scholar
  14. Guroff G, Daly JW, Jerina DM, Renson J, Witkop B, Udenfriend S (1967) Hydroxylation-induced migration: the NIH shift. Science 157:1524–1530CrossRefGoogle Scholar
  15. Hesselsøe M, Jensen D, Skals K, Olesen T, Moldrup P, Roslev P, Krog Mortensen G, Henriksen K (2001) Degradation of 4-nonylphenol in homogeneous and nonhomogeneous mixtures of soil and sewage sludge. Environ Sci Technol 35:3695–3700CrossRefGoogle Scholar
  16. Imai Y, Matsunaga I, Kusunose E, Ichihara K (2000) Unique heme environment at the putative distal region of hydrogen peroxide-dependant fatty acid α-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450SPα). J Biochem 128:189–194Google Scholar
  17. Koerts J, Soffers AEMF, Vervoort J, De Jager A, Rietjens IMCM (1998) Occurrence of the NIH shift upon the cytochrome P450-catalyzed in vivo and in vitro aromatic ring hydroxylation of fluorobenzenes. Chem Res Toxicol 11:503–512CrossRefGoogle Scholar
  18. Lalah JO, Schramm KW, Severin GF, Lenoir D, Henkelmann B, Behechti A, Guenther K, Kettrup A (2003) In vivo metabolism and organ distribution of a branched 14C-nonylphenol isomer in pond snails, Lymnea stagnalis L. Aquat Toxicol 62:305–319CrossRefGoogle Scholar
  19. Liber K, Knuth ML, Stay FS (1999) An integrated evaluation of the persistence and effects of 4-nonylphenol in an experimental littoral ecosystem. Environ Toxicol Chem 18:357–362CrossRefGoogle Scholar
  20. Lobos JH, Leib TK, Su TM (1992) Biodegradation of bisphenol A and other bisphenols by a gram-negative bacterium. Appl Environ Microbiol 58:1823–1831Google Scholar
  21. Soto AM, Justica H, Wray JW, Sonnenschein C (1991) Para-nonylphenol: an estrogenic xenobiotic released from polystyrene. Environ Health Perspect 92:167–173Google Scholar
  22. Spivack J, Leib TK, Lobos JH (1994) Novel pathway for bacterial metabolism of bisphenol A. J Biol Chem 269:7323–7329Google Scholar
  23. Sundaram KMS, Szeto S (1981) The dissipation of nonylphenol in stream and pond water under simulated field conditions. J Environ Sci Health B16:767–776Google Scholar
  24. Tanghe T, Devriese G, Verstraete W (1998) Nonylphenol degradation in lab scale activated sludge units is temperature dependent. Water Res 32:2889–2896CrossRefGoogle Scholar
  25. Tanghe T, Dhooge W, Verstraete W (1999) Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol 65:746–751Google Scholar
  26. Tanghe T, Dhooge W, Verstraete W (2000) Formation of the metabolic intermediate 2,4,4-trimethyl-3-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation 11:11–19CrossRefGoogle Scholar
  27. Topp E, Starratt A (2000) Rapid mineralization of the endocrine-disrupting chemical 4-nonylphenol in soil. Environ Toxicol Chem 19:313–318CrossRefGoogle Scholar
  28. Ushiba Y, Takahara Y, Ohta H (2003) Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048CrossRefGoogle Scholar
  29. Vallini G, Frassinetti S, Scorzetti G (1997) Candida aquaetextoris sp. nov., a new species of yeast occurring in sludge from a textile industry wastewater treatment plant in Tuscany, Italy. Int J Syst Bacteriol 47:336–340CrossRefGoogle Scholar
  30. Van Ginkel CG 1996. Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7:151–164CrossRefGoogle Scholar
  31. Vinken R, Schmidt B, Schäffer A (2002) Synthesis of tertiary 14C-labelled nonylphenol isomers. J Label Compd Radiopharm 45:1253–1263CrossRefGoogle Scholar
  32. Wheeler TF, Heim JR, LaTorre MR, B Janes (1997) Mass spectral characterization of p-nonylphenol isomers using high-resolution capillary GC-MS. J Chromatogr Sci 35:19–30Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • P. F. X. Corvini
    • 1
  • R. Meesters
    • 2
  • M. Mundt
    • 4
  • A. Schäffer
    • 1
  • B. Schmidt
    • 1
  • H. -Fr. Schröder
    • 2
  • W. Verstraete
    • 3
  • R. Vinken
    • 1
  • J. Hollender
    • 4
  1. 1.Institute of Environmental Research (Biology V)RWTH Aachen UniversityAachenGermany
  2. 2.Department of Environmental Engineering (ISA)RWTH Aachen UniversityAachenGermany
  3. 3.Laboratory of Microbial Ecology and Technology (LabMET)GhentBelgium
  4. 4.Institute of Hygiene and Environmental HealthUniversity Hospital-RWTH AachenAachenGermany

Personalised recommendations