Advertisement

Biodegradation

, Volume 18, Issue 2, pp 223–231 | Cite as

Isolation and Characterization of two New Microbial Strains Capable of Degradation of the Naturally Occurring Organophosphonate––Ciliatine

  • Magdalena Klimek-Ochab
  • Agnieszka Obojska
  • Anna M. Picco
  • Barbara Lejczak
Original Paper

Abstract

Air-born mixed fungal and bacterial culture capable of complete degradation of ciliatine was isolated. The utilization of the natural organophosphonate proceeded in the phosphate independent manner. Enzymatic activity involved in ciliatine degradation studied in the fungal cell-free extract proved to be distinct from bacterial pathway described before.

Keywords

2-AEP:pyruvate transaminase 2-Aminoethylphosphonic acid (2-AEP · ciliatine) Biodegradation Carbon–phosphorus bond cleavage Organophosphonates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Ministry of Education and Science, Grant 2 P04B 001 28.

References

  1. Adosinda M, Martins M, Ferreira IC, Santos IM, Queiroz MJ, Lima N (2001) Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium. J␣Biotechnol 89:91–98CrossRefGoogle Scholar
  2. Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63CrossRefGoogle Scholar
  3. Bode R, Birnbaum D (1989) Specificity of glyphosate action in Candida maltosa. Biochem Physiol Pflanzen 184:163–170Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Bujacz B, Wieczorek P, Krzyśko-Łupicka T, Gołąb Z, Lejczak B, Kafarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61:2905–2910Google Scholar
  6. Cook AM, Daughton CG, Alexander M (1978) Phosphonate utilization by bacteria. J Bacteriol 133:85–90Google Scholar
  7. Fiske CH, SubbaRow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400Google Scholar
  8. Kawai S, Uno B, Tomita M (1991) Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. J Chromatogr 540:411–415CrossRefGoogle Scholar
  9. Kononova SV, Nesmeyanova MA (2001) Phosphonates and their degradation by microorganisms. Biochemistry (Moscow) 67:184–195CrossRefGoogle Scholar
  10. Krzyśko-Łupicka T, Strof W, Kubś K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552CrossRefGoogle Scholar
  11. Nowack B (2003) Environmental chemistry of phosphonic acids. In: Valsami-Jones E (ed) Phosphorus in environmental technology: principles and applications. IWA Publishing, pp 147–173Google Scholar
  12. Olsen DB, Hepburn TW, Lee S, Martin BM, Mariano PS, Dunaway-Mariano D (1992) Investigation of the substrate binding and catalytic groups of the C–P cleaving enzyme, phosphonoacetaldehyde hydrolase. Arch Biochem Biophys 296:144–151CrossRefGoogle Scholar
  13. Sobera M, Wieczorek P, Lejczak B, Kafarski P (1997) Organophosphonate utilization by the wild-type strain of Cladosporium resinae. Toxicol Environ Chem 61:229–235CrossRefGoogle Scholar
  14. Ternan NG, McMullan G (2000) The utilization of 4-aminobutylphosphonate as sole nitrogen source by a strain of Kluveromyces fragilis. FEMS Microbiol Lett 184:237–240CrossRefGoogle Scholar
  15. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245CrossRefGoogle Scholar
  16. Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon In: Neidhardt FC, Curtis RI, Gross CA, Ingraham JL, Lin ECC, Low KB Jr, Magasanic B, Reznikoff W, Schaechter M, Umbarger HE, Riley M (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. American Society of Microbiology, Washington, pp 1357–1381Google Scholar
  17. Watanabe K, Hamamura N (2003) Molecular and physiological approaches to understanding the ecology of␣pollutant degradation. Curr Opin Biotechnol 14:289–295CrossRefGoogle Scholar
  18. Weiland M, Daro A, David C (1995) Biodegradation of thermally oxidized polyethylene. Polym Degrad Stabil 48:275–289CrossRefGoogle Scholar
  19. Zboińska E, Maliszewska I, Lejczak B, Kafarski P (1992) Degradation of organophosphonates by Penicillium citrinum. Lett Appl Microbiol 15:269–272Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Magdalena Klimek-Ochab
    • 1
  • Agnieszka Obojska
    • 1
  • Anna M. Picco
    • 2
  • Barbara Lejczak
    • 1
  1. 1.Department of Bioorganic ChemistryWroclaw University of TechnologyWroclawPoland
  2. 2.Department of Land Ecology, Section of MycologyUniversity of PaviaPaviaItaly

Personalised recommendations