Advertisement

Biodegradation

, Volume 17, Issue 2, pp 79–89 | Cite as

Microbial Succession in a Compost-packed Biofilter Treating Benzene-contaminated Air

  • Sara Borin
  • Massimo Marzorati
  • Lorenzo Brusetti
  • Mario Zilli
  • Hanene Cherif
  • Abdennaceur Hassen
  • Attilio Converti
  • Claudia Sorlini
  • Daniele Daffonchio
Article

Abstract

Air artificially contaminated with increasing concentrations of benzene was treated in a laboratory scale compost-packed biofilter for 240 days with a removal efficiency of 81–100%. The bacterial community in the packing material (PM) at different heights of the biofilter was analysed every 60 days. Bacterial plate counts and ribosomal intergenic spacer analysis (RISA) of the isolated strains showed that the number of cultivable aerobic heterotrophic bacteria and the species diversity increased with benzene availability. Identification of the isolated species and the main bands in denaturing gradient gel electrophoresis (DGGE) profiles from total compost DNA during the treatment revealed that, at a relatively low volumetric benzene load (1.2≤VBL≤6.4 g m−3 PM h−1), besides low G+C Gram positive bacteria, originally present in the packing compost, bacteroidetes and β- and γ-proteobacteria became detectable in the colonising population. At the VBL value (24.8 g m−3 PM h−1) ensuring the maximum elimination capacity of the biofilter (20.1 g m−3 PM h−1), strains affiliated to the genus Rhodococcus dominated the microflora, followed by β-proteobacteria comprising the genera Bordetella and Neisseria. Under these conditions, more than 35% of the isolated strains were able to grow on benzene as the sole carbon source. Comparison of DGGE and automated RISA profiles of the total community and isolated strains showed that a complex bacterial succession occurred in the reactor in response to the increasing concentrations of the pollutant and that cultivable bacteria played a major role in benzene degradation under the adopted conditions.

Key words

air biofiltration benzene compost microbial ecology DNA-fingerprinting Rhodococcus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ME Acuña, F Pérez, R Auria and S Revah, Microbiological and kinetic aspect of a biofilter for the removal of toluene from waste gases. Biotechnol. Bioeng. 63 (1999) 175-183CrossRefGoogle Scholar
  2. A Ahrens, A Lipski, S Klatte, HJ Busse, G Auling and K Altendorf, Polyphasic classification of proteobacteria isolated from biofilters. Syst. Appl. Microbiol. 20 (1997) 255-267Google Scholar
  3. FM Ausubel, R Brent, RE Kingston, DD Moore, JG Seidman, JA Smith and K Struhl, Current Protocols of Molecular Biology. USA: John Wiley and Sons (1994).Google Scholar
  4. L Brusetti, P Francia, C Bertolini, A Pagliuca, S Borin, C Sorlini, A Abruzzese, G Sacchi, C Viti, L Giovannetti, E Giuntini, M Bazzicalupo and D Daffonchio, Bacterial rhizosphere community of transgenic Bt176 maize and its non transgenic counterpart. Plant Soil 266 (2004) 11-21CrossRefGoogle Scholar
  5. L Cavalca, P Di Gennaro, M Colombo, V Andreoni, S Bernasconi, I Ronco and G Bestetti, Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. Res. Microbiol. 51 (2000) 877-887CrossRefGoogle Scholar
  6. A Cherif, L Brusetti, S Borin, A Rizzi, A Boudabous, H Khyami-Horani and D Daffonchio, Genetic relationship in the ‘Bacillus cereus group’ by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol. 94 (2003) 1108-1119CrossRefGoogle Scholar
  7. D Daffonchio, S Borin, A Consolandi, D Mora, P Manachini and C Sorlini, 16–23S rRNA internal transcribed spacers as molecular markers for the species of the 16S rRNA group I of the genus Bacillus. FEMS Microbiol. Lett. 163 (1998) 229-236Google Scholar
  8. PM Dees and WC Ghiorse, Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 35 (2001) 207-216CrossRefGoogle Scholar
  9. U Friedrich, K Prior, K Altendorf and A Lipski, High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ. Microbiol. 4 (2002) 721-734CrossRefGoogle Scholar
  10. JR Hanson, CE Ackerman and KM Scow, Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl. Environ. Microbiol. 65 (1999) 4788-4792Google Scholar
  11. Heuer H & Smalla K (1997) Application of Denaturing Gel Electrophoresis and Temperature Gradient Gel Electropho- resis for studying soil microbial communities. In: Van Elsas JD, Trevors JT and Wellington EMH (Eds) Modern Soil Microbiology, (pp 353–370). New York.Google Scholar
  12. P Juteau, R Larocque, D Rho and A LeDuy, Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl. Microbiol. Biotechnol. 52 (1999) 863-868CrossRefGoogle Scholar
  13. N Lansac, FJ Picard, C Ménard, M Boissinot, M Ouellette, PH Roy and MG Bergeron, Novel genus-specific PCR-based assays for rapid identification of Neisseria species and Neisseria  meningitidis. Eur. J. Clin. Microbiol. Infect. Dis. 19 (2000) 443-451CrossRefGoogle Scholar
  14. G Leson and AM Winer, Biofiltration: an innovative air pollution control technology for VOC emissions. J. Air Waste Manag. Assoc. 41 (1991) 1045-1054Google Scholar
  15. A Lipski and K Altendorf, Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst. Appl. Microbiol. 20 (1997) 448-457Google Scholar
  16. S Møller, AR Pedersen, LK Poulsen, E Arvin and S Molin, Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridisation and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62 (1996) 4632-4640Google Scholar
  17. W Namkoong, JS Park and JS Gheynst Van der, Effect of gas velocity and influent concentration on biofiltration of gasoline off-gas from soil vapor extraction. Chemosphere 57 (2004) 721-730CrossRefGoogle Scholar
  18. S Peters, S Koschinsky, F Schwieger and CC Tebbe, Succession of microbial communities during hot composting as detected by PCR-single-stranded-conformation-polymorphism-based genetic profiles of small-subunit rRNA genes. Appl. Environ. Microbiol. 66 (2000) 930-936CrossRefGoogle Scholar
  19. S Roy, J Gendron, MC Delhoménie, L Bibeau, M Heitz and R Brezinki, Pseudomonas putida as the dominat toluene-degrading bacterial species during air decontamination by biofiltration. Appl. Microbiol. Biotechnol. 61 (2003) 366-373Google Scholar
  20. Y Sakano and L Kerkhof, Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. Appl. Environ. Microbiol. 64 (1998) 4877-4882Google Scholar
  21. J Sambrook, EF Fritsch and T Maniatis, Molecular Cloning: A Laboratory Manual. 1,2,3,. NY: Cold Spring Harbor Laboratory Press (1989).Google Scholar
  22. AM Sass, H Sass, MJL Coolen, H Cypionka and J Overmann, Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl. Environ. Microbiol. 67 (2001) 5392-5402CrossRefGoogle Scholar
  23. L Sene, A Converti, MG Felipe and M Zilli, Sugarcane bagasse as alternative packing material for biofiltration of benzene polluted gaseous streams: a preliminary study. Biores. Technol. 83 (2002) 153-157CrossRefGoogle Scholar
  24. C Urzì, L Brusetti, S Salamone, C Sorlini, E Stackebrandt and D Daffonchio, Frequency and biodiversity of Geodermatophilaceae isolated from altered stones in the Mediterranean basin. Environ. Microbiol. 3 (2001) 471-479CrossRefGoogle Scholar
  25. JD Hamme Van, A Singh and OP Ward, Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67 (2003) 503-549CrossRefGoogle Scholar
  26. MC Veiga and C Kennes, Parameters affecting performance and modelling of biofilters treating alkylbenzene-polluted air. Appl. Microbiol. Biotechnol. 55 (2001) 254-258CrossRefGoogle Scholar
  27. F Von Wintzingerode, A Schattke, RA Siddiqui, U Rösick, UB Göbel and R Gross, Bordetella  petrii Nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int. J. Syst. Evol. Microbiol. 51 (2001) 1257-1265Google Scholar
  28. M Zilli and A Converti, Biofilters. In: MC Flickinger and SW Drew (eds.) The Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. New York: Wiley (1999) pp. 305-319Google Scholar
  29. M Zilli, D Daffonchio, R Di Felice, M Giordani and A Converti, Treatment of benzene-contaminated airstreams in laboratory-scale biofilters packed with raw and sieved sugarcane bagasse and with peat. Biodegradation 15 (2004) 87-96CrossRefGoogle Scholar
  30. Zilli M, Guarino C, Daffonchio D, Borin S & Converti A (2005) Laboratory-scale experiments with a powdered compost biofilter treating benzene-polluted air. Proc. Biochem., in press, available online 29 September 2004.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Sara Borin
    • 1
  • Massimo Marzorati
    • 1
  • Lorenzo Brusetti
    • 1
  • Mario Zilli
    • 2
  • Hanene Cherif
    • 3
  • Abdennaceur Hassen
    • 3
  • Attilio Converti
    • 2
  • Claudia Sorlini
    • 1
  • Daniele Daffonchio
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Alimentari e MicrobiologicheUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di Ingegneria Chimica e di ProcessoUniversità degli Studi di GenovaGenovaItaly
  3. 3.Laboratoire Eau & EnvironnementInstitut National Recherche Scientifique & TechnologiqueTunisTunisia

Personalised recommendations