Advertisement

Biodegradation

, Volume 16, Issue 2, pp 181–186 | Cite as

Detection and characterisation of catechol 2,3-dioxygenase in an indigenous soil Pseudomonad by MALDI-TOF MS using a column separation

  • Eirini Tsirogianni
  • Michalis Aivaliotis
  • Michael Karas
  • Georgios Tsiotis
Article

Abstract

The key enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway (C23O) has been purified to homogeneity from a new bacterial strain, which belongs to genus Pseudomonas. The species was growing on phenol as carbon source. The C23O was detected and identified by absorption spectroscopy. The protein was isolated using sucrose density centrifugation and anion exchange chromatography. The purified protein showed a molecular mass of 32 kDa to sodium dodecyl sulfate polyacrylamid gel electrophoresis and an isoelectric point of 5 estimated by analytical isoelectrical focusing. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and peptide mapping was attempted for the identification of the isolated protein and proteins involved in the metabolic pathway.

Keywords

MALDI; catechol-2,3-dioxygenase extradiol dioxygenase phenol degradation Pseudomonas sp. strain phDV1 

Abbreviations

C12O

catechol 1,2-dioxygenase

C23O

catechol 2,3-dioxygenase

MALDI-TOF

matrix assisted laser desorption ionisation-time of flight

MS

mass spectrometry

SDS PAGE

sodium dodecyl sulfate polyacrylamid gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouwer, EJ, Zehnder, AJB 1993Bioremediation of organic compounds-putting microbial metabolism to workTrends Biotechnol.11360367Google Scholar
  2. Briganti, F, Pessione, E, Giunta, C, Mazzoli, R, Scozzafava, A 2000Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistensJ. Protein Chem.19709716Google Scholar
  3. Briganti, F, Pessione, E, Giunta, C, Scozzafava, A 1997Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistensFEBS Lett.4166164Google Scholar
  4. Chen MQ, Yin CC, Zhang W, Mao YM & Zhang ZH (1998) Purification, crystallization and preliminary X-ray diffraction studies on the thermostable catechol 2,3-dioxygenase of Bacillus stearothermophilus expressed in Escherichia coli. Acta Crystallogr. D Biol. Crystallogr. 54(Pt 3); 446–447.Google Scholar
  5. Chen YX, Liu H & Chen HL (2002) Cloning and expression of catechol 2,3-dioxygenase gene from aromatic-compound degrading Pseudomonas aeruginosa ZD 4-3. Submitted (MAY-2002) to the EMBL/GenBank/DDBJ database.Google Scholar
  6. Hammer, A, Stolz, A, Knackmuss, H 1996Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatecholArch. Microbiol.16692100Google Scholar
  7. Harwood, CS, Parales, RE 1996The β-ketoadipate pathway, and the biology of self-identityAnnu. Rev. Microbiol.50553590Google Scholar
  8. Houghton, JEShanley, MS eds. 1994Catabolic potential of Pseudomonads: a regulatory perspectiveDioscorides PressPortland1132Google Scholar
  9. Johnson, BF, Stanier, RY 1971Dissimilation of aromatic compounds by Alcaligenes eutrophusJ. Bacteriol.107468475Google Scholar
  10. Kang, BS, Ha, JY, Lim, JC, Lee, J, Kim, CK, Min, KR, Kim, Y 1998Structure of catechol 2,3-dioxygenase gene from Alcaligenes eutrophus 335Biochem. Biophys. Res. Commun.245791796Google Scholar
  11. Kataeva, IA, Golovleva, LA 1990Catechol 2,3-dioxygenases from Pseudomonas aeruginosa 2xMethods Enzymol.188115121CrossRefGoogle Scholar
  12. Kita, A, Kita, S, Fujisawa, I, Inaka, K, Ishida, T, Horiike, K, Nozaki, M, Miki, K 1999An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Ppseudomonas putida mt-2Structure Fold Des.72534Google Scholar
  13. Kitayama, A, Achioku, T, Yanagawa, T, Kanou, K, Kikuch, i.M, Ueda, H, Suzuki, E, Nishimura, H, Nagamune, T, Kawakami, Y 1996Cloning and characterization of extradiol aromatic ring-cleavage dioxygenases of Pseudomonas aeruginosa JI104J. Ferment. Bioeng.82217223Google Scholar
  14. Kobayashi, T, Ishida, T, Horiike, K, Takahara, Y, Numao, N, Nakazawa, A, Nakazawa, T, Nozaki, M 1995Overexpression of Pseudomonas putida catechol2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli. 117614622Google Scholar
  15. Kojoma, Y, Itada, N, Hayashi, O 1961Metapyrocatechase: a New Catechol-cleaving EnzymeJ. Biol. Chem23622232228Google Scholar
  16. Kunz, DA, Chapman, PJ 1981Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence fornew function of the TOL (pWW0) plasmidJ. Bacteriol.146179191Google Scholar
  17. Nakai, C, Hori, K, Kagamiyama, H, Nakazawa, T, Nozaki, M 1983Purification, subunit structure, and partial amino acid sequence of metapyrocatechaseJ. Mol. Biol.25829162922Google Scholar
  18. Nordlund, I, Shingler, V 1990Nucleotide sequences of the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Pseudomonas CF600Biochim. Biophys. Acta.1049227230Google Scholar
  19. Okuta, A, Ohnishi, K, Harayama, S 1998PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genesGene212221228Google Scholar
  20. Ornston, LN, Stanier, RY 1966The conversion of catechol and pyrocatechuate to b-ketoadipate by Pseudomonas putidaJ. Biol. Chem.24137763786Google Scholar
  21. Quadroni, M, James, P 1999Proteomics and automationElectrophoresis20664677Google Scholar
  22. Schaegger, H, von, Jagow G 1987Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDaAnal. Biochem.166368379Google Scholar
  23. Tsirogianni, I, Tsiotis, G 2002Preparative isolectric focusingJagow G, Hunte C.Schaegger,  H eds. A Practical Guide to Membrane Protein PurificationAcademic PressNew York131142Google Scholar
  24. Williams, PA, Sayers, JR 1994The evolution of pathways for aromatic hydrocarbon oxidation in PseudomonasBiodegradation5195217Google Scholar
  25. Winkler, J, Eltis, LD, Dwyer, DF, Rohde, M 1995Tetrameric structure and cellular location of catechol 2,3-dioxygenaseArch. Microbiol.1636569Google Scholar
  26. Yates, JR, Eng, JK, McCormack, AL, Schieltz, D 1995Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein databaseAnal. Chem.6714261436Google Scholar
  27. You, IS, Ghosal, D, Gunsalus, IC 1991Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3’-flanking regionBiochemistry3016351641Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Eirini Tsirogianni
    • 1
  • Michalis Aivaliotis
    • 1
  • Michael Karas
    • 2
  • Georgios Tsiotis
    • 1
  1. 1.Division of Biochemistry, Department of ChemistryUniversity of CreteHeraklionGreece
  2. 2.Institut für Pharmazeutische ChemieInstrumentelle Analytische Chemie Johann Wolfgang Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations