, Volume 16, Issue 3, pp 253–263 | Cite as

Propylphenols are metabolites in the anaerobic biodegradation of propylbenzene under iron-reducing conditions

  • Sara Eriksson
  • Tobias Ankner
  • Katarina Abrahamsson
  • Lotta Hallbeck


The metabolism of monoaromatic hydrocarbons by an iron-reducing bacterial enrichment culture originating from diesel-contaminated groundwater was examined using d7-propylbenzene as a model hydrocarbon. Sequence analysis of the 16S rDNA gene showed that the dominant part (10 of 10 clones) of the enrichment culture consisted of a bacterium closely related to clones found in benzene-contaminated groundwater and to the iron-reducing β-proteobacterium, Rhodoferax ferrireducens (similarity values were 99.5% and 98.3%, respectively). In degradation studies conducted over 18 weeks, d7-propylphenols were detected by gas chromatography–mass spectrometry (GC/MS) as intra-cellular metabolites concomitant with cell growth in the cultures. The amount of propylphenols increased during the exponential growth phase, and by the end of this phase 4 × 10−14 moles of ferric iron were reduced and 3 × 10−15 moles propylphenol produced for every cell formed. During the stationary growth phase the cell density was approximately 107 ml−1, with significantly correlated amounts of propylphenols. Succinate derivates of propylbenzene or phenylpropanol previously shown to be the initial metabolites in the anaerobic degradation of alkylbenzenes could not be identified. This study is the first to report that oxidation of propylbenzene to propylphenols can initiate anaerobic propylbenzene degradation and that iron-reducing bacteria are responsible for this process. In addition, the study shows the importance of taking account of the metabolites adhering to solid phases when determining the extent of biodegradation, so as not to underestimate the extent of the process.


anaerobic alkylbenzene degradation propylphenol Rhodoferax 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfreider, A, Vogt, C, Babel, W 2002Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysisSystem. Appl. Microbiol.25232240Google Scholar
  2. Banwart, S, Tullborg, E-L, Pedersen, K, Gustafsson, E, Laaksoharju, M, Nilsson, A-C, Wallin, B, Wikberg, P 1996Organic carbon oxidation induced by large-scale shallow water intrusion into a vertical fracture zone at the Äspö Hard Rock Laboratory (Sweden)J. Contam. Hydrol.21115125Google Scholar
  3. Ball, HA, Johnsson, HA, Reinhard, M, Spormann, AM 1996Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1J. Bacteriol.17857555761Google Scholar
  4. Beller, HR 2000Metabolic indicators for detecting in situ anaerobic alkylbenzene degradationBiodegradation11125139Google Scholar
  5. Beller, HR, Spormann, AM 1998Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the productJ. Bacteriol.18054545457Google Scholar
  6. Biegert, T, Fuchs, G, Heider, J 1996Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarateEur. J. Biochem.238661668Google Scholar
  7. Caldwell, ME, Suflita, JM 2000Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditionsEnviron. Sci. Technol.3412161220Google Scholar
  8. Cozzarelli, IM, Bekins, BA, Baedecker, MJ, Aiken, GR, Eganhouse, RP, Tuccillo, ME 2001Progression of natural attenuation processes at a crude-oil spill site: I Geochemical evolution of the plumeJ. Contam. Hydrol.53369385Google Scholar
  9. Dean, BJ 1985Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenolsMutat. Res.145153181Google Scholar
  10. Elshahed, MS, Gieg, LM, McInerny, MJ, Suflita, J 2001Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environmentsEnviron. Sci. Technol.35682689Google Scholar
  11. Fogelqvist, E, Josefsson, B, Roos, C 1980Determination of carboxylic acids and phenols in water by extractive alkylation using pentafluorobenzylation, glass capillary GC and electron capture detectionHRC & CC.3568574Google Scholar
  12. Finneran, KT, Johnsen, CV, Lovley, DR 2003Rhodoferax ferrireducens sp nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)Int. J. Syst. Evol. Microbiol.53669673Google Scholar
  13. Fredrickson, JK, Zachara, JM, Kennedy, DW, Dong, H, Onstott, TC, Hinman, NW, Li, S-M 1998Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacteriumGeochim. Cosmochim. Acta6232393257Google Scholar
  14. Hallbeck, L, Pedersen, K, Eriksson, B, Abrahamsson, K, Lorén, A, Eliasson, C 1998Analys, förekomst och mikrobiell nedbrytning i och kring bergrumsanläggning 143, Blädinge. Report to the Swedish Stockpile AgencySwedish Geological SurveyStockholmGoogle Scholar
  15. Hallbeck, L, Pedersen, K 1990Culture parameters regulating stalk formation and growth rate of Gallionella ferrugineaJ. Gen. Microbiol.13616751680Google Scholar
  16. Hobbie, JE, Daley, RJ, Jasper, S 1977Use of nucleopore filters for counting bacteria by fluorescence microscopyAppl. Environ. Microbiol.3312251228Google Scholar
  17. Kane, SR, Beller, HR, Legler, TC, Anderson, RT 2002Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducensBiodegradation13149154Google Scholar
  18. Lane, DJ 199116S/23S rDNA SequencingStackebrandt, EGoodfellow, M eds. Nucleic Acid Techniques in Bacterial SystematicsWiley & Sons Ltd.West Sussex115175Google Scholar
  19. Lorén, A, Hallbeck, L, Pedersen, K, Abrahamsson, K 2001Determination and distribution of diesel components in igneous rock surrounding underground diesel storage facilities in SwedenEnviron. Sci. Technol.35374378Google Scholar
  20. Lovley, DR, Philips, EJP 1986Organic matter mineralization with the reduction of ferric iron in anaerobic sedimentsAppl. Environ. Microbiol.51683689Google Scholar
  21. Martus, P, Püttman, W 2003Formation of alkylated aromatic acids in groundwater by anaerobic degradation of alkylbenzenesSci. Total Environ.3071933Google Scholar
  22. Phelps, CD, Young, LY 1999Anaerobic biodegradation of BTEX and gasoline in various aquatic sedimentsBiodegradation101525Google Scholar
  23. Rabus, R, Widdel, F 1995Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteriaArch. Microbiol.16396103Google Scholar
  24. Roffey, R 1989Microbial problems during long-term storage of petroleum products underground in rock cavernsInt. Biodeter.25219236Google Scholar
  25. Stookey, LL 1970Ferrozine–a new spectrophotometric reagent for ironAnal. Chem.42779781Google Scholar
  26. Vogel, TM, Grbic-Galic, D 1986Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformationAppl. Environ. Microbiol.52200202Google Scholar
  27. Watanabe, K, Watanabe, K, Kodama, Y, Syutsubo, K, Harayama, S 2000Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavitiesAppl. Environ. Microbiol.6648034809Google Scholar
  28. Weiner, JM, Lovley, DR 1998Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquiferAppl. Environ. Microbiol.6419371939Google Scholar
  29. Weisburg, WG, Barns, SM, Pelletier, DA, Lane, DJ 199116S ribosomal DNA amplification for phylogenetic studyJ. Bacteriol.173697703Google Scholar
  30. Widdel, F, Bak, F 1992Gram-negative mesophilic sulfate-reducing bacteriaBalows, ATrüper, HGDworking, MHarder, WSchleifer, KH eds. The prokaryotes Vol IVSpringer-VerlagBerlin33523377Google Scholar
  31. Widdel, F, Kohring, G-W, Mayer, F 1983Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfomona limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol.134286294Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Sara Eriksson
    • 1
  • Tobias Ankner
    • 2
  • Katarina Abrahamsson
    • 2
  • Lotta Hallbeck
    • 1
  1. 1.Department for Cell and Molecular Biology – MicrobiologyGöteborg UniversityGöteborgSweden
  2. 2.Department of Chemistry and Biosciences – Analytical and Marine ChemistryChalmers University of TechnologyGöteborgSweden

Personalised recommendations