Genetic evidence for sex-biased dispersal and cryptic diversity in the greater horseshoe bat, Rhinolophus ferrumequinum

Abstract

Dispersal plays an important role in the ecological and evolutionary processes of natural populations. Mating behavior (or mating system) is a critical factor shaping dispersal patterns and extents in social mammals, sometimes driving the evolution of sex-biased dispersal. Using molecular markers with contrasting modes of inheritance (mitochondrial DNA and nuclear microsatellites), we determined the population genetic structure and evolutionary history of the great horseshoe bat, Rhinolophus ferrumequinum inhabiting eleven national parks of South Korea, being known as a biodiversity hotspot. Despite apparent matrilineal structure observed over space, there was weak nuclear geographic structure, suggesting female philopatry with male-biased dispersal. The analyses indicated the signal of nonrandom mating (i.e. inbreeding), which is at least partly due to female’s sedentary lifestyle. The large-scale phylogenetic analysis revealed unexpected deep divergence among three distinct clades (Southwest China, East China, and Northeast Asia including South Korea), suggesting these may possibly represent cryptic species complex in R. ferrumequinum. Our findings of sex differences in dispersal in R. ferrumequinum inform conservation managements to enhance the population connectivity among the national parks through promoting female dispersal. Our study also highlights cryptic species diversity in a temperate bat that should have a priority for conservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The mtDNA CR sequences obtained for this study have been deposited in GenBank under the Accession Number MT374769. The partial dataset (distribution of mtDNA haplotypes among sampling localities) from this study is also included in Online Resource (Table A1).

References

  1. Aizawa M, Kim Z-S, Yoshimaru H (2012) Phylogeography of the Korean pine (Pinus koraiensis) in northeast Asia: inferences from organelle gene sequences. J Plant Res 125:713–723

    PubMed  Google Scholar 

  2. Avise J (1994) Molecular markers, natural history and evolution, 1st edn. Springer, Boston, MA

    Google Scholar 

  3. Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662

    PubMed  PubMed Central  Google Scholar 

  4. Borkin KM, Parsons S (2011) Sex-specific roost selection by bats in clearfell harvested plantation forest: improved knowledge advises management. Acta Chiropterol 13:373–383

    Google Scholar 

  5. Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) Economic importance of bats in agriculture. Science 332:41–42

    Google Scholar 

  6. Burland T, Barratt E, Nichols R, Racey PA (2001) Mating patterns, relatedness and the basis of natal philopatry in the brown long-eared bat, Plecotus auritus. Mol Ecol 10:1309–1321

    CAS  PubMed  Google Scholar 

  7. Byeon SY, Jang JE, Choi HJ et al (2018) Genetic diversity and phylogenetic relationships of the Greater Horseshoe Bat, Rhinolophus ferrumequinum, from National Parks of Korea including the Baekdudaegan Mountain Range. J Nat Park Res 9:336–342

    Google Scholar 

  8. Chen SF, Jones G, Rossiter S (2008) Sex-biased gene flow and colonization in the Formosan lesser horseshoe bat: inference from nuclear and mitochondrial markers. J Zool 274:207–215

    Google Scholar 

  9. Chung MY, Son S, Suh GU et al (2018) The Korean Baekdudaegan Mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Front Genet 9:489

    PubMed  PubMed Central  Google Scholar 

  10. Clobert J, Danchin E, Dondt A, Nichols J (2001) Dispersal. Oxford University Press, New York

    Google Scholar 

  11. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Corthals A, Martin A, Warsi OM et al (2015) From the field to the lab: best practices for field preservation of bat specimens for molecular analyses. PLoS ONE 10:e0118994

    PubMed  PubMed Central  Google Scholar 

  13. Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe bats of the world: (Chiroptera: Rhinolophidae). Alana Books, Bishop’s Castle, Shropshire

    Google Scholar 

  14. Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawson DA, Rossiter SJ, Jones G, Faulkes CG (2004) Microsatellite loci for the greater horseshoe bat, Rhinolophus ferrumequinum (Rhinolophidae, Chiroptera) and their cross-utility in 17 other bat species. Mol Ecol Notes 4:96–100

    CAS  Google Scholar 

  16. Dingle H, Drake VA (2007) What is migration? Bioscience 57:113–121

    Google Scholar 

  17. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet 4:359–361

    Google Scholar 

  18. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  19. Flanders J, Jones G, Benda P et al (2009) Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Mol Ecol 18:306–318

    CAS  PubMed  Google Scholar 

  20. Flanders J, Wei L, Rossiter SJ, Zhang S (2011) Identifying the effects of the Pleistocene on the greater horseshoe bat, Rhinolophus ferrumequinum, in East Asia using ecological niche modelling and phylogenetic analyses. J Biogeogr 38:439–452

    Google Scholar 

  21. Flanders J, Inoue-Murayama M, Rossiter SJ, Hill DA (2016) Female philopatry and limited male-biased dispersal in the Ussuri tube-nosed bat, Murina ussuriensis. J Mammal 97:545–553

    Google Scholar 

  22. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  23. Freeman S, Herron JC (2015) Evolutionary analysis, 5th edn. Pearson, London

    Google Scholar 

  24. Fu YX (1996) New statistical tests of neutrality for DNA samples from a population. Genetics 143:557–570

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goudet J (2001) FSTAT, a program to estimate and test gene diversity and fixation indices Version 2.9.3. Retrieved from http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 9 Apr 2020

  26. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Google Scholar 

  27. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  PubMed  Google Scholar 

  28. Hall T, Biosciences I, Carlsbad C (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2:60–61

    Google Scholar 

  29. Hartl D, Clark A (2007) Principles of population genetics, 4th edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  30. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeon YS, Kim SC, Han SH, Chung CU (2018) Characteristics of the home range and habitat use of the greater horseshoe bat (Rhinolophus ferrumequinum) in an urban landscape. J Environ Sci Int 27:665–675

    Google Scholar 

  32. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  33. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  34. Kingston T (2010) Research priorities for bat conservation in Southeast Asia: a consensus approach. Biodivers Conserv 19:471–484

    Google Scholar 

  35. Koh HS, Jo JE, Oh JG et al (2014) Little genetic divergence of the greater horseshoe bat Rhinolophus ferrumequinum from far-eastern Asia, with a preliminary report on genetic differentiation of R. ferrumequinum from Eurasia and northern Africa examined from cytochrome b sequences. Russ J Theriol 13:97–103

    Google Scholar 

  36. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kunz TH, de Torrez EB, Bauer D et al (2011) Ecosystem services provided by bats. Ann NY Acad Sci 1223:1–38

    PubMed  Google Scholar 

  38. Lawson Handley L, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578

    CAS  PubMed  Google Scholar 

  39. Li G, Jones G, Rossiter SJ et al (2006) Phylogenetics of small horseshoe bats from East Asia based on mitochondrial DNA sequence variation. J Mammal 87:1234–1240

    Google Scholar 

  40. Liu T, Sun K, Park YC, Feng J (2016) Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia. PeerJ 4:e2472

    PubMed  PubMed Central  Google Scholar 

  41. Mabry KE, Shelley EL, Davis KE et al (2013) Social mating system and sex-biased dispersal in mammals and birds: a phylogenetic analysis. PLoS ONE 8:e57980

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayer F, von Helversen O (2001) Cryptic diversity in European bats. Proc Biol Sci 268:1825–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mousset S, Derome N, Veuille M (2004) A test of neutrality and constant population size based on the mismatch distribution. Mol Biol Evol 21:724–731

    CAS  PubMed  Google Scholar 

  44. Moussy C, Hosken D, Mathews F et al (2013) Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Rev 43:183–195

    Google Scholar 

  45. Park S (2008) Excel Microsatellite Toolkit. Version 3.1.1. Animal Genomics Lab website, University College, Dublin, Ireland

  46. Paz Od, Fernandez R, Benzal J (1986) El anillamiento de quiropteros en el centro de la peninsula iberica durante el periodo 1977–86. Bol Estac Cent Ecol 30:113–138

    Google Scholar 

  47. Pérez-Espona S, Pérez-Barbería F, Jiggins C et al (2010) Variable extent of sex-biased dispersal in a strongly polygynous mammal. Mol Ecol 19:3101–3113

    PubMed  Google Scholar 

  48. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Google Scholar 

  49. Piertney SB, MacColl AD, Bacon PJ et al (2000) Matrilineal genetic structure and female-mediated gene flow in red grouse (Lagopus lagopus scoticus): an analysis using mitochondrial DNA. Evolution 54:279–289

    CAS  PubMed  Google Scholar 

  50. Piraccini R (2016) Rhinolophus ferrumequinum. The IUCN red list of threatened species 2016: e.T19517A21973253.  https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T19517A21973253.en. Downloaded 24 Jan 2021

  51. Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Google Scholar 

  52. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Quinn TW, Wilson AC (1993) Sequence evolution in and around the mitochondrial control region in birds. J Mol Evol 37:417–425

    CAS  PubMed  Google Scholar 

  54. Ransome R (1989) Population changes of greater horseshoe bats studied near Bristol over the past twenty-six years. Biol J Linn Soc 38:71–82

    Google Scholar 

  55. Rivers NM, Butlin RK, Altringham JD (2005) Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol Ecol 14:4299–4312

    CAS  PubMed  Google Scholar 

  56. Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Google Scholar 

  57. Rossiter SJ, Burland TM, Jones G, Barratt EM (1999) Characterization of microsatellite loci in the greater horseshoe bat Rhinolophus ferrumequinum. Mol Ecol 8:1959–1960

    CAS  PubMed  Google Scholar 

  58. Rossiter SJ, Jones G, Ransome RD, Barratt EM (2000a) Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum. Mol Ecol 9:1131–1135

    CAS  PubMed  Google Scholar 

  59. Rossiter SJ, Jones G, Ransome RD, Barratt EM (2000b) Parentage, reproductive success and breeding behaviour in the greater horseshoe bat (Rhinolophus ferrumequinum). Proc R Soc B 267:545–551

    CAS  PubMed  Google Scholar 

  60. Rossiter SJ, Jones G, Ransome RD, Barratt EM (2002) Relatedness structure and kin-biased foraging in the greater horseshoe bat (Rhinolophus ferrumequinum). Behav Ecol Sociobiol 51:510–518

    Google Scholar 

  61. Rossiter SJ, Ransome RD, Faulkes CG et al (2005) Mate fidelity and intra-lineage polygyny in greater horseshoe bats. Nature 437:408–411

    CAS  PubMed  Google Scholar 

  62. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed  Google Scholar 

  63. Rydell J (1989) Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Ecography 12:16–20

    Google Scholar 

  64. Shahabi S, Akmali V, Sharifi M (2017) Taxonomic evaluation of the greater horseshoe bat Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Iran inferred from the mitochondrial D-Loop gene. Zool Sci 34:361–367

    Google Scholar 

  65. Sun K, Luo L, Kimball RT et al (2013) Geographic variation in the acoustic traits of greater horseshoe bats: testing the importance of drift and ecological selection in evolutionary processes. PLoS ONE 8:e70368

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Teacher A, Griffiths D (2011) HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 11:151–153

    CAS  PubMed  Google Scholar 

  68. Thompson M (1990) The pipistrelle bat (Pipistrellus pipistrellus Schreber) on the vale of work. Naturalist 115:41–56

    Google Scholar 

  69. Thompson M (1992) Roost philopatry in female pipistrelle bats Pipistrellus pipistrellus. J Zool 228:673–679

    Google Scholar 

  70. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  71. Voigt CC, Kingston T (2016) Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham

    Google Scholar 

  72. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  73. Worthington Wilmer J, Barratt E (1996) A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res News 37:1–3

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Korea National Park Research Institute (Project Number: NPRI 2018-39), Korea National Park Service in South Korea. We thank members of the Korea National Park Research Institute for helping to collect samples in the field. We also thank members of the Molecular Ecology and Evolution Laboratory for helpful comments on the manuscript.

Author information

Affiliations

Authors

Contributions

HRK, HHM and HJL conceived and designed the study; JEJ, SYB, JYK and HJL performed the experiments and analyzed the data; HRK and JYK supported the field expedition for bat sampling; JEJ, SYB and HJL drafted the manuscript, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Hyuk Je Lee.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

No permits were required for the collection of bat samples since this species is not listed as endangered in Korea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Karen E. Hodges.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jang, J.E., Byeon, S.Y., Kim, H.R. et al. Genetic evidence for sex-biased dispersal and cryptic diversity in the greater horseshoe bat, Rhinolophus ferrumequinum. Biodivers Conserv 30, 847–864 (2021). https://doi.org/10.1007/s10531-021-02120-y

Download citation

Keywords

  • Baekdudaegan Mountain
  • Cryptic diversity
  • Female natal philopatry
  • Habitat conservation
  • Male-biased gene flow
  • National parks