Skip to main content

Advertisement

Log in

Forest cover drives leaf litter ant diversity in primary rainforest remnants within human-modified tropical landscapes

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The main effects of habitat loss and fragmentation have been addressed through changes in diversity patterns at different spatial levels. Species richness and diversity are the most used descriptors to assess the effect of changes in land use on tropical communities. However, other biological responses such as richness and diversity of trophic guilds may also provide a better understanding about the robustness and resilience of tropical environments to disturbance. In this study, we evaluated how changes in local and landscape characteristics associated to habitat loss and fragmentation affect: (i) species richness and Shannon diversity as well as (ii) trophic guild richness and diversity of leaf litter ants in human-modified tropical rainforest landscapes in Mexico. For this, we sampled ants in 16 sampling sites and recorded a series of descriptors at both local (i.e. elevation, temperature, relative humidity, soil pH, canopy cover, litter volume and vegetation structure) and landscape level (i.e. landscape heterogeneity, forest cover and connectivity). Overall, we observed that increasing primary forest cover within the sampling sites positively influenced richness and diversity of species and trophic guilds. In addition, at the local level, we found that only richness and diversity of ant species were negatively associated with tree density (i.e. number of trees, litter volume and canopy cover). These findings suggest that opportunistic species can be favored in environments with low tree density. In short, our complementary approach highlights the importance of environmental variability and primary forest cover in the maintenance of ant biodiversity in primary rainforest remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen A (1997) Using ants as bioindicators: multiscale issues in ant community ecology. Conserv Ecol 1:8

    Article  Google Scholar 

  • Andersen AN, Hoffmann BD, Müller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17

    Article  Google Scholar 

  • Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23:1386–1395

    Article  PubMed  Google Scholar 

  • Assis DS, Dos Santos IA, Ramos FN, Barrios-Rojas KE, Majer JD, Vilela EF (2018) Agricultural matrices affect ground ant assemblage composition inside forest fragments. PLoS ONE 13:e0197697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badano EI, Regidor HA, Nunez HA, Acosta R, Gianoli E (2005) Species richness and structure of ant communities in a dynamic archipelago: effects of island area and age. J Biogeogr 32:221–227

    Article  Google Scholar 

  • Bartón K (2016) Package “MuMIn: Multi-model inference”. R package version 1.5.6. http://CRAN.R-project.org/package=MuMIn

  • Beattie A, Hughes L (2002) Ant–plant interactions. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell Science, Great Britain, pp 211–235

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R, 6th edn. Springer, New York, p 306

    Book  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information and theoretic approach, 2nd edn. Springer, New York, p 1229

    Google Scholar 

  • Campbell KU, Crist TO (2017) Ant species assembly in constructed grasslands is structured at patch and landscape levels. Insect Conserv Divers 10:180–191

    Article  Google Scholar 

  • Carvalho KS, Vasconcelos HL (1999) Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biol Conserv 91:151–157

    Article  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    Article  PubMed  Google Scholar 

  • Coelho LFM, Ribeiro MC, Pereira RAS (2014) Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes. Acta Oecol 57:109–116

    Article  Google Scholar 

  • Corro EJ, Ahuatzin DA, Aguirre A, Favila ME, Ribeiro MC, Acosta JCL, Dáttilo W (2019) Forest cover and landscape heterogeneity shape ant-plant co-occurrence networks in human-dominated tropical rainforests. Landscape Ecol. https://doi.org/10.1007/s10980-018-0747-4

    Article  Google Scholar 

  • Crist TO, Wiens JA (1994) Scale effects of vegetation on forager movement and seed harvesting by ants. Oikos 69:37–46

    Article  Google Scholar 

  • Cross SL, Cross AT, Merritt DJ, Dixon KW, Andersen AN (2016) Biodiversity responses to vegetation structure in a fragmented landscape: ant communities in a peri-urban coastal dune system. J Insect Conserv 20:485–495

    Article  Google Scholar 

  • Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329

    Article  Google Scholar 

  • Dauber J, Purtauf T, Allspach A, Frisch J, Voigtländer K, Wolters V (2005) Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob Ecol Biogeogr 14:213–221

    Article  Google Scholar 

  • De la Mora A, Murnen CJ, Philpott SM (2013) Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodivers Conserv 22:871–888

    Article  Google Scholar 

  • Debuse VJ, King J, House AP (2007) Effect of fragmentation, habitat loss and within-patch habitat characteristics on ant assemblages in semi-arid woodlands of eastern Australia. Landsc Ecol 22:731–745

    Article  Google Scholar 

  • Del Toro I, Silva RR, Ellison AM (2015) Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. Divers Distrib 21:781–791

    Article  Google Scholar 

  • Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Venail P, Villéger S, Mouquet N (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25

    Article  Google Scholar 

  • Di Giulio M, Edwards PJ, Meister E (2001) Enhancing insect diversity in agricultural grasslands: the roles of management and landscape structure. J Appl Ecol 38:310–319

    Article  Google Scholar 

  • Dormann CF et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:001–020

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Falcão JCF, Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2017) Assessing the impacts of tramp and invasive species on the structure and dynamics of ant-plant interaction networks. Biol Conserv 209:517–523

    Article  Google Scholar 

  • Fayle TM, Turner EC, Snaddon JL, Chey VK, Chung AY, Eggleton P, Foster WA (2010) Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl Ecol 11:337–345

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • García-Martínez MÁ, Martínez-Tlapa DL, Pérez-Toledo GR, Quiroz-Robledo LN, Castaño-Meneses G, Laborde J, Valenzuela-González JE (2015) Taxonomic, species and functional group diversity of ants in a tropical anthropogenic landscape. Trop Conserv Sci 8:1017–1032

    Article  Google Scholar 

  • García-Martínez MÁ, Martínez-Tlapa DL, Pérez-Toledo GR, Quiroz-Robledo LN, Valenzuela-González JE (2016) Myrmecofauna (Hymenoptera: Formicidae) response to habitat characteristics of tropical montane cloud forests in central Veracruz, Mexico. Fla Entomol 99:248–256

    Article  Google Scholar 

  • García-Martínez MÁ, Valenzuela-González JE, Escobar-Sarria F, López-Barrera F, Castaño-Meneses G (2017) The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants. PLoS ONE 12:e0172464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850

    Article  Google Scholar 

  • González-Soriano E, Dirzo R, Vogt R (1997) Historia natural de los Tuxtlas. UNAM. Instituto de Biología, Mexico, p 647

    Google Scholar 

  • Grimbacher PS, Edwards W, Liddell MJ, Nelson PN, Nichols C, Wardhaugh CW, Stork NE (2018) Temporal variation in abundance of leaf litter beetles and ants in an Australian lowland tropical rainforest is driven by climate and litter fall. Biodivers Conserv. https://doi.org/10.1007/s10531-018-1558-2

    Article  Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433

    Article  Google Scholar 

  • Groc S, Delabie JH, Fernandez F, Leponce M, Orivel J, Silvestre R, Vasconcelos H, Dejean A (2014) Leaf-litter ant communities (Hymenoptera: Formicidae) in a pristine Guianese rainforest: stable functional structure versus high species turnover. Myrmecol News 19:43–51

    Google Scholar 

  • Hadley AS, Betts MG (2016) Refocusing habitat fragmentation research using lessons from the last decade. Curr Landsc Ecol Rep 1:55–66

    Article  Google Scholar 

  • Helms JA (2018) The flight ecology of ants (Hymenoptera: Formicidae). Myrmecol News 26:19–30

    Google Scholar 

  • Hemmings Z, Andrew NR (2017) Effects of microclimate and species identity on body temperature and thermal tolerance of ants (Hymenoptera: Formicidae). Austral Entomol 56:104–114

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vander-Meer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hsieh T, Ma K, Chao A (2016) Package “iNEXT: iNterpolation and EXTrapolation for species diversity”. R package version 2.0. 12 URL http://chao.stat.nthu.edu.tw/blog/software-download

  • Johnson JT, Adkins JK, Rieske LK (2014) Canopy vegetation influences ant (Hymenoptera: Formicidae) communities in headwater stream riparian zones of Central Appalachia. J Insect Sci 14:1–5

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  PubMed  Google Scholar 

  • Kareiva P (1994) Special feature: space: the final frontier for ecological theory. Ecology 75:1-1

    Google Scholar 

  • Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, Novotny V (2012) Why are there more arboreal ant species in primary than in secondary tropical forests? J Anim Ecol 81:1103–1112

    Article  PubMed  Google Scholar 

  • Laska MS (1997) Structure of understory shrub assemblages in adjacent secondary and old growth tropical wet forests, Costa Rica. Biotropica 29:29–37

    Article  Google Scholar 

  • Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164

    Article  Google Scholar 

  • Leal IR, Filgueiras BK, Gomes JP, Iannuzzi L, Andersen AN (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodivers Conserv 21:1687–1701

    Article  Google Scholar 

  • Liu C, Dudley KL, Zheng-Hui X, Economo EP (2018) Mountain metacommunities: climate and spatial connectivity shape ant diversity in a complex landscape. Ecography 41:101–112

    Article  Google Scholar 

  • Longino JT, Branstetter MG, Valenzuela J (2017) Ants of Los Tuxtlas biological station, Veracruz, Mexico. ADMAC. https://sites.google.com/site/admacsite/reports/2016-mexico/ants-of-los-tuxtlas Accessed: 05 February 2017

  • Martello F, de Bello F, de Castro Morini MS, Silva RR, de Souza-Campana DR, Ribeiro MC, Carmona CP (2018) Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci Rep 8:3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCary MA, Minor E, Wise DH (2018) Covariation between local and landscape factors influences the structure of ground-active arthropod communities in fragmented metropolitan woodlands. Landsc Ecol 33:225–239

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1995) Fragstat: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station

  • Mendes ES, Fonseca C, Marques SF, Maia D, Pereira MJR (2017) Bat richness and activity in heterogeneous landscapes: guild-specific and scale-dependent? Landsc Ecol 32:295–311

    Article  Google Scholar 

  • Mendoza E, Fay J, Dirzo R (2005) A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. Rev Chil His Nat 78:451–467

    Google Scholar 

  • Miranda F, Hernández E (1963) Los tipos de vegetación de México y su clasificación. Bol Soc Bot México 28:29–179

    Google Scholar 

  • Mostacedo B, Fredericksen T (2000) Manual de métodos básicos de muestreo y análisis en ecología vegetal. Proyecto de manejo forestal sostenible (BOLFOR). El País. Bolivia, pp 10–11

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  PubMed  Google Scholar 

  • Newbold T et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J et al (2017) “vegan: Community Ecology Package”. R Package 2.4-3. https://CRAN.R-project.org/package=vegan

  • Pacheco R, Vasconcelos HL (2012) Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodivers Conserv 21:797–809

    Article  Google Scholar 

  • Paolucci LN, Solar RR, Sobrinho TG, Sperber CF, Schoereder JH (2012) How does small-scale fragmentation affect litter-dwelling ants? The role of isolation. Biodivers Conserv 21:3095–3105

    Article  Google Scholar 

  • Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: artificial nests maintain diversity of arboreal ants. Ecol Appl 15:1478–1485

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Radford JQ, Bennett AF, Cheers GJ (2005) Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol Conserv 124:317–337

    Article  Google Scholar 

  • Reynolds C et al (2017) Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation. Landscape Ecol. https://doi.org/10.1007/s10980-017-0595-7 in press

    Article  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol 28:305–314

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoereder JH, Sobrinho TG, Ribas CR, Campos RBF (2004) Colonization and extinction of ant communities in a fragmented landscape. Austral Ecol 29:391–398

    Article  Google Scholar 

  • Sebastián-González E, Dalsgaard B, Sandel B, Guimarães PR (2015) Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters. Global Ecol Biogeogr 24:293–303

    Article  Google Scholar 

  • Silva RR, Brandão CRF (2014) Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PLoS ONE 9:e93049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Evol Syst 22:115–143

    Article  Google Scholar 

  • Sobrinho TG, Schoereder JH (2007) Edge and shape effects on ant (Hymenoptera: Formicidae) species richness and composition in forest fragments. Biodivers Conserv 16:1459–1470

    Article  Google Scholar 

  • Solar RR et al (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118

    Article  PubMed  Google Scholar 

  • Solar RR, Barlow J, Andersen AN, Schoereder JH, Berenguer E, Ferreira JN, Gardner TA (2016) Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities. Biol Conserv 197:98–107

    Article  Google Scholar 

  • Soto M (2006) El Clima. In: Guevara SS, Laborde DJ, Sánchez-Ríos G (eds) Los Tuxtlas: El paisaje de la sierra. Instituto de Ecología, A. C. y Unión Europea, Mexico, pp 195–200

    Google Scholar 

  • Spiesman BJ, Cumming GS (2008) Communities in context: the influences of multiscale environmental variation on local ant community structure. Landsc Ecol 23:313–325

    Article  Google Scholar 

  • Stevens RD, Cox SB, Strauss RE, Willig MR (2003) Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecol Lett 6:1099–1108

    Article  Google Scholar 

  • Syrbe RU, Walz U (2012) Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecol Indic 21:80–88

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tiede Y, Schlautmann J, Donoso DA, Wallis CI, Bendix J, Brandl R, Farwig N (2017) Ants as indicators of environmental change and ecosystem processes. Ecol Indic 83:527–537

    Article  Google Scholar 

  • Tscharntke T et al (2012) Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209

    Article  Google Scholar 

  • Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182

    Article  Google Scholar 

  • Van der Wal J, Falconi L, Januchowski D, Shoo L, Storlie C (2012) SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version 1.1-13

  • Vasconcelos HL, Vilhena J, Magnusson WE, Albernaz AL (2006) Long-term effects of forest fragmentation on Amazonian ant communities. J Biogeogr 33:1348–1356

    Article  Google Scholar 

  • Vasconcelos HL, Leite MF, Vilhena J, Lima AP, Magnusson WE (2008) Ant diversity in an Amazonian savanna: relationship with vegetation structure, disturbance by fire, and dominant ants. Austral Ecol 33:221–231

    Article  Google Scholar 

  • Vavrek MJ (2015) Package “fossil”. R Package Version 0.3.7. https://cran.r-project.org/web/packages/fossil/

  • Von Thaden JJ, Laborde J, Guevara S, Venegas-Barrera CS (2018) Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: the contribution of the 1998 protected natural area decree. Land Use Policy 72:443–550

    Article  Google Scholar 

  • Wiezik M, Svitok M, Wieziková A, Dovčiak M (2015) Identifying shifts in leaf-litter ant assemblages (Hymenoptera: Formicidae) across ecosystem boundaries using multiple sampling methods. PLoS ONE 10:e0134502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock P, Edwards DP, Fayle TM, Newton RJ, Khen CV, Bottrell SH, Hamer KC (2011) The conservation value of South East Asia’s highly degraded forests: evidence from leaf-litter ants. Philos Trans R Soc Lond B Biol Sci 366:3256–3264

    Article  PubMed  PubMed Central  Google Scholar 

  • Worthen WB (1996) Community composition and nested-subset analyses: basic descriptors for community ecology. Oikos 76:417–426

    Article  Google Scholar 

  • Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:259–266

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Praxedis Sinaca Colín and Karla Selene Andalco Cid for their help during the fieldwork of this study. Our appreciation and deep gratitude is given to the staff of the “Los Tuxtlas” Tropical Biology Field Station, for their support and hospitality. We also wish to thank to the owners of the tropical forest fragments for allowing us to carry out this study within their properties. We are very grateful to the staff of the Entomological Collection IEXA, Dora L. Martínez Tlapa, Miguel Ángel García Martínez and Gibran Renoy Pérez Toledo, for the unconditional support and their valuable help identifying the collected specimens. We are thankful to José G. García Franco, Federico Escobar Sarria and Sebastian Sendoya for their comments and suggestions to this manuscript. DAA gratefully acknowledges the award of a graduate studies scholarship from CONACyT (No. 416583). AA and WD received financial contribution by PO-INECOL (20030-11315) and PO-INECOL (20030-11581), respectively. RMF was supported by CNPq (grant 302462/2016-3). MCR was funded by FAPESP (2013/50421-2), PROCAD/CAPES (project # 88881.068425/2014-01) and CNPq UNIVERSAL (425746/2016-0) and receives research grants from the Brazilian Council of Research and Scientific Development (CNPq) (312045/2013-1; 312292/2016-3). Finally, we thank the reviewers, whose constructive suggestions have improved the quality of this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Dáttilo.

Additional information

Communicated by Andreas Schuldt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahuatzin, D.A., Corro, E.J., Jaimes, A.A. et al. Forest cover drives leaf litter ant diversity in primary rainforest remnants within human-modified tropical landscapes. Biodivers Conserv 28, 1091–1107 (2019). https://doi.org/10.1007/s10531-019-01712-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01712-z

Keywords

Navigation