Skip to main content

Advertisement

Log in

Range contraction to a higher elevation: the likely future of the montane vegetation in South Africa and Lesotho

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Global climate change is a major challenge for the future with serious potential impacts on biodiversity. Biodiversity in mountains is particularly vulnerable as many montane species are adapted to narrow microhabitats, making them less able to adjust to a climatic change. It is considered important to investigate range changes in the South African Great Escarpment because of the high levels of biodiversity in these mountains, as well as their importance for water provision in South Africa. The current and future ranges of 46 montane plant species in South Africa and Lesotho were therefore modelled using biomod in R, using presence points and predictor variables which included rainfall and temperature worldclim layers. The performance of distribution models produced was evaluated using the Area Under the receiver operating Curve (AUC), True Skill Statistic (TSS), Sensitivity and Specificity. We calculated beta diversity and species richness changes between current and future climates for the group of 46 species, as well as shifts of the predicted presence region boundaries and centroids. We also analysed shifts in minimum, median and maximum elevations. Results show a contraction in species’ ranges towards higher elevation as has been documented from other mountain regions around the world. These results are a cause for concern as a warming climate is decreasing the potential regions of occurrence of montane species in South Africa and Lesotho’s mountainous regions of high biodiversity. This region is under a diverse range of conservation and land use management practises, and our results suggest a coordinated response to climate change is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barry RG (2008) Mountain weather and climate. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baselga A, Orme D, Villeger S, De Bortoli J, Lerieur F (2013) betapart: Partitioning beta diversity into turnover and nestedness components. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology 15(4):365–377

    Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Bentley J, Verboom GA, Bergh NG (2014) Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus. BMC Evolut Biol 14(1):27

    Article  Google Scholar 

  • Birkenhauer J (1991) The Great Escarpment of southern Africa and its coastal forelands—a re-appraisal. Geobuch-Verlag, Munich

    Google Scholar 

  • Bishop TR, Robertson MP, van Rensburg BJ, Parr CL (2015) Contrasting species and functional beta diversity in montane ant assemblages. J Biogeogr 42(9):1776–1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Bivand R, Rundel C, Pebesma E, Stuetz R, Hufthammer KO (2016) rgeos: interface to geometry engine - open source (GEOS). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Buckland S, Cole NC, Aguirre-Gutierrez J, Gallagher LE, Henshaw SM, Besnard A, Tucker RM, Bachraz V, Rohumaun K, Harris S (2014) Ecological effects of the invasive giant madagascar day gecko on endemic mauritian geckos: applications of binomial-mixture and species distribution models. PLoS ONE 9(4):1–9

    Article  CAS  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond RAE, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JM, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Carbutt C (2012) The emerging invasive alien plants of the Drakensberg Alpine Centre, southern Africa. Bothalia 42(2):71–85

    Article  Google Scholar 

  • Carbutt C, Edwards TJ (2004) The flora of the Drakensberg Alpine Centre. Edinb J Bot 60(3):581–607

    Article  Google Scholar 

  • Carbutt C, Edwards TJ (2006) The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. S Afr J Bot 72(1):105–132

    Article  Google Scholar 

  • Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Model 210(4):478–486

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Clark VR, Barker NP, Mucina L (2009) The Sneeuberg: a new centre of floristic endemism on the Great Escarpment, South Africa. S Afr J Bot 75:196–238

    Article  Google Scholar 

  • Clark VR, Barker NP, Mucina L (2011a) Taking the Scenic route–the southern Great Escarpment (South Africa) as part of the Cape to Cairo florisitic highway. Plant Ecol Divers 4(4):313–328

    Article  Google Scholar 

  • Clark VR, Barker NP, Mucina L (2011b) A phytogeographic assessment of the Nuweveldberge. South Africa. S Afr J Bot 77(1):147–159

    Article  Google Scholar 

  • Clark VR, Barker NP, Mucina L (2011c) The Roggeveldberge—Notes on a botanically hot area on a cold corner of the southern Great Escarpment, South Africa. S Afr J Bot 77(1):112–126

    Article  Google Scholar 

  • Clark VR, Dold AP, McMaster C, McGregor G, Bredenkamp C, Barker NP (2014) Rich sister, poor cousin: plant diversity and endemism in the Great Winterberg-Amatholes (Great Escarpment, Eastern Cape, South Africa). S Afr J Bot 92:159–174

    Article  Google Scholar 

  • Cowling RM, Hilton-Taylor C (1997) Phytogeography, flora and endemism. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of Southern Africa. Cambridge University Press, Cambridge, pp 43–61

    Google Scholar 

  • Crouch NR (2011) Ferns of Southern Africa. Struik Nature, Cape Town

    Google Scholar 

  • Crowson JM (2011) Maloti Drakensberg Transfrontier Park Joint Management: Sehlabathebe National Park (Lesotho) and the uKhahlamba Drakensberg Park World Heritage Site (South Africa). Science and stewardship to protect and sustain wilderness values: In: Watson A, Murrieta-Saldivar J, McBride B (eds) Ninth World Wilderness Congress symposium.. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp. 53

  • Department of Environmental Affairs (2013) Long-Term Adaptation Scenarios Flagship Research Programme (LTAS) for South Africa. Climate Trends and Scenarios for South Africa, Pretoria

    Google Scholar 

  • Devictor V, Van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M, Lindström Å, Reif J (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change 2:121–124

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Sobero´ J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342

    Article  Google Scholar 

  • Engelbrecht FA, Landman WA, Engelbrecht CJ, Landman S, Bopape MM, Roux B, McGregor JL, Thatcher M (2011) Multi-scale climate modelling over Southern Africa using a variable-resolution global model. Water SA 37(5):647–658

    Article  Google Scholar 

  • Foden W, Potter L (2005a) Indigofera burchellii DC. Homepage of Red List of South African Plants. http://redlist.sanbi.org/species.php?species=357-64. Accessed 22 June 2015

  • Foden W, Potter L (2005b) Polygala gymnoclada Homepage of Red List of South African Plants. http://redlist.sanbi.org/species.php?species=3614-40. Accessed 22 June 2015

  • Foden W, Potter L (2011) Senecio asperulus Homepage of Red List of South African Plants. http://redlist.sanbi.org/species.php?species=3152-37. Accessed 22 June 2015

  • Freeman E (2012) PresenceAbsence: presence-absence model evaluation. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Grab S, Nüsser M (2001) Towards an integrated research approach for the Drakensberg and Lesotho mountain environments: a case study from the Sani plateau region. S Afr Geogr J 83(1):64–68

    Article  Google Scholar 

  • Guillarmod AJ (1977) Rhodohypoxis in the Sehlabathebe Mountain National Park, Lesotho. Veld Flora 63(3):21

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hadley KS, Price LW, Grabherr G (2013) Mountain Vegetation. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. University of California Press, Los Angeles, pp 183–220

    Google Scholar 

  • Haensler A, Hagemann S, Daniela J (2011) The role of the simulation setup in a long-term highresolution climate change projection for the Southern African region. Theor Appl Climatol 106:153–169

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2015) dismo: species distribution modeling. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Hilliard OM, Burtt BL (1987) The botany of the southern Natal Drakensberg. National Botanic Gardens

  • Hoare DB (n.d.) Tetrachne dregei Nees Homepage of CIAT/FAO. http://www.fao.org/ag/agp/AGPC/doc/gbase/Safricadata/tetradre.htm. Accessed 22 June 2015

  • Hodd RL, Bourke D, Skeffington MC (2014) Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation. PLoS ONE 9(4):1–14

    Article  Google Scholar 

  • Hughes J, Benn G, Laros M (2007) Spatial assessment of biodiversity priorities in the Lesotho highlands: executive summary. Report for the maloti Drakensberg Transfrontier project

  • Hyde MA, Wursten BT, Ballings P, Coates Palgrave M (2015a) Flora of Zimbabwe: species information: Haplocarpha nervosa. Homepage of Flora of Zimbabwe. http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=161730. Accessed 22 June 2015

  • Hyde MA, Wursten BT, Ballings P, Coates Palgrave M (2015b) Flora of Zimbabwe: species information: Mohria nudiuscula. Homepage of Flora of Zimbabwe. http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=161730. Accessed 22 June 2015

  • Ihlow F, Bonke R, Hartmann T, Geissler P, Behler N, Rodder D (2014) Habitat suitability, coverage by protected areas and population connectivity for the Siamese crocodile Crocodylus siamensis Schneider, 1801. Aquat Conserv 25(4):544–554

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva

  • IUCN (2012) IUCN Red List Categories and Criteria: Version 3.1. IUCN, Gland and Cambridge

  • Kalwij JM, Robertson MP, van Rensburg BJ (2008) Human activity facilitates altitudinal expansion of exotic plants along a road in montane grassland, South Africa. Appl Veg Sci 11(4):491–498

    Article  Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe 22 havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  • Kleinhans M (2016) Moving mountains: commodity: diamonds & gems moving. Inside Min 9(6):10–11

    Google Scholar 

  • Kopij G (2002) The birds of Sehlabathebe National Park, Lesotho. Koedoe 45(1):65–78

    Article  Google Scholar 

  • Koppen W (1936) Das geographische System der Klimate. In: Koppen W, Geiger R (eds) Handbuch der Klimatologie. Verlag von Gebru¨der Borntraeger, Berlin, pp 1–44

    Google Scholar 

  • Lawrence E (2002) Pelargonium zonale Homepage of Plantzafrica. http://www.plantzafrica.com/plantnop/pelargzonale.htm. Accessed 22 June 2015

  • Lenoir J, Gegout J, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dullinger S, Pauli H, Willner W, Svenning J (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warmer climate. Ecography 33:295–303

    Google Scholar 

  • Letšela T, Witkowski ETF, Balkwill K (2003) Plant resources used for subsistence in Tsehlanyane and Bokong in Lesotho. Econ Bot 57(4):619–639

    Article  Google Scholar 

  • Lynch JP (1990) The mammals of Sehlabathebe National Park, Lesotho. Res Natl Mus Bloemfontein 6(12):525–527

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Princeton University Press, Princeton

    Google Scholar 

  • Marnewick MD, Retief EF, Theron NT, Wright DR, Anderson TA (2015) Important bird and biodiversity areas of South Africa. BirdLife South Africa, Johannesburg

    Google Scholar 

  • Matthews WS, van Wyk AE, Bredenkamp GJ (1993) Endemic flora of the north-eastern Transvaal Escarpment, South Africa. Biol Conserv 63(1):83–94

    Article  Google Scholar 

  • McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In: McCain CM, Grytnes JA (eds) Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • McCarthy T, Rubidge B (2005) The story of earth and life. Struik, Cape Town

    Google Scholar 

  • McVean DN (1977). Nature conservation in Lesotho

  • Medail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Meditterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    Article  CAS  PubMed  Google Scholar 

  • Nel W (2009) Rainfall trends in the KwaZulu-Natal Drakensberg region of South Africa during the twentieth century. Int J Climatol 29(11):1634–1641

    Article  Google Scholar 

  • Notten A (2009) Euryops annae[Homepage of Plantzafrica http://www.plantzafrica.com/plantefg/euryopsannae.htm. Accessed 22 June 2015

  • Nӓgele KL, Hausdorf B (2015) Comparative phylogeography of land snail species in mountain refugia in the European Southern Alps. J Biogeogr 42(5):821–832

    Article  Google Scholar 

  • Ollier CD (1985) Morphotectonics of continental margins with great escarpments. In: Morisawa M, Hack JT (eds) Tectonic geomorphology. Allen and Unwin, Boston

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Partridge TC, Maud RR (1987) Regional geomorphic evidence for climatic change in southern Africa since the Mesozoic. Palaeoecol Afr 18:337–345

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430

    Article  Google Scholar 

  • Peters RL, Darling JDS (1985) The greenhouse effect and nature reserves. Bioscience 35(11):707–717

    Article  Google Scholar 

  • Platts PJ, Gereau RE, Burger ND, Marchant R (2013) Spatial heterogeneity of climate change in an Afromontane centre of endemism. Ecography 36:518–530

    Article  Google Scholar 

  • Pooley E (2003) Mountains flowers: a field guide to the flora of drakensberg and lesotho. Flora Publications Trust, Durban

    Google Scholar 

  • Pooley E (2005) A Field Guide to Wild Flowers of Kwazulu-Natal and the Eastern Region, 2nd edn. Natal Flora Publications Trust, Durban

    Google Scholar 

  • Quinlan T, Morris CD (1994) Implications of changes to the transhumance system for conservation of the mountain catchments in eastern Lesotho. Afr J Range Forage Sci 11(3):76–81

    Article  Google Scholar 

  • R core team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robertson MP, Visser V, Hui C (2016) Biogeo: an R package for assessing and improving data quality of occurrence record datasets. Ecography 39(4):394–401

    Article  Google Scholar 

  • Rushworth I, Krüger S (2014) Wind farms threaten southern Africa’s cliff-nesting vultures. Ostrich 85(1):13–23

    Article  Google Scholar 

  • SANBI (2009) PRECIS Information Database Homepage of SANBI. http://posa.sanbi.org/intro_precis.php. Accessed 17 March 2017

  • Sandwith T (2003) Overcoming barriers: conservation and development in the Maloti-Drakensberg Mountains of Southern Africa. J Sustain For 17(1–2):149–169

    Article  Google Scholar 

  • Schonswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14(11):3547–3555

    Article  CAS  PubMed  Google Scholar 

  • Shroyer ME, Blignaut P (2003) Mountain conservation in South Africa. USDA Forest Service Proceedings RMRS-P-27, pp. 26–33

  • Staples RR, Hudson WK (1938) An ecological survey of the mountain area of Basutoland. Crown Agents, London

    Google Scholar 

  • Taylor SJ, Ferguson JWH, Engelbrecht FA, Clark VR, Van Rensburg S, Barker N (2016) The Drakensberg Escarpment as the great supplier of water to South Africa. In: Greenwood GB, Shroder JF Jr (eds) Mountain ice and water: investigations of the hydrologic cycle in alpine environments. Elsevier, Oxford, pp 1–46

    Google Scholar 

  • Thuiller W, Georges D, Engler R (2014) biomod2: ensemble platform for species distribution modelling. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Turpie J, Forsythe K (Eds) (2014) State of the Mohales Dam Catchment. Volume 2. Specialist studies on Land Cover, Flora and Wetlands

  • Vorsino AE, Fortini LB, Amidon FA, Miller SE, Jacobi JD, Price JP, Gon SA III, Koob GA (2014) Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates. PLoS ONE 9(5):1–18

    Article  CAS  Google Scholar 

  • Waites B (2000) The Lesotho highlands water project. Geography 85(4):369–374

    Google Scholar 

  • Wang B, Jiang J, Xie F, Li C (2013) Phylogeographic patterns of mtDNA variation revealed multiple glacial refugia for the frog species Feirana taihangnica endemic to the Qinling Mountains. J Mol Evol 76(3):112–128

    Article  CAS  PubMed  Google Scholar 

  • Webber BL, Yates CJ, Le Maitre DC, Scott JK, Kriticos DJ, Ota N, McNeill A, Le Roux JJ, Midgley GF (2011) Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers Distrib 17:978–1000

    Article  Google Scholar 

  • White F (1983) The vegetation of Africa. UNESCO, Paris

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Wybenga W (2006) Wildflowers of Lesotho’s Tséhlanyane National Park: feature. Veld Flora 92(2):81–85

    Google Scholar 

Download references

Acknowledgements

We are grateful to three anonymous reviewers for their comments on this manuscript. We also thank Dr. V. R. Clark for the use of his plant occurrence database to provide independent evaluation occurrence records. Funding for this research was provided by the National Research Foundation of South Africa (Grant Unique Number GUN 2069059 to NPB), as well as the South African National Space Agency (SANSA) Earth Observation directorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Barker.

Additional information

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentley, L.K., Robertson, M.P. & Barker, N.P. Range contraction to a higher elevation: the likely future of the montane vegetation in South Africa and Lesotho. Biodivers Conserv 28, 131–153 (2019). https://doi.org/10.1007/s10531-018-1643-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1643-6

Keywords

Navigation