Advertisement

Biodiversity and Conservation

, Volume 27, Issue 4, pp 1011–1030 | Cite as

Diversity patterns in sandy forest-steppes: a comparative study from the western and central Palaearctic

  • Zoltán Bátori
  • László Erdős
  • András Kelemen
  • Balázs Deák
  • Orsolya Valkó
  • Róbert Gallé
  • Tatyana M. Bragina
  • Péter János Kiss
  • György Kröel-Dulay
  • Csaba Tölgyesi
Original Paper

Abstract

The Palearctic forest-steppe biome is a narrow vegetation zone between the temperate forest and steppe biomes, which provides important habitats for many endangered species and represents an important hotspot of biodiversity. Although the number of studies on forest–grassland mosaics is increasing, information currently available about the general compositional and structural patterns of Eurasian forest-steppes is scarce. Our study aimed to compare the habitat structure, species composition and diversity patterns of two distant sandy forest-steppes of Eurasia. We compared 72 relevés made in the main habitat components (forest, forest edge and grassland) of sandy forest-steppes in three Hungarian and three Kazakh sites. The size of the plots was 25 m2. Species number, Shannon diversity and species evenness values were calculated for each plot. Fidelity calculations and linear mixed effects models were used for the analyses. We found that the vegetation and diversity patterns of the two forest-steppes are similar and their components play important roles in maintaining landscape-scale diversity. Despite the higher species richness in Hungary, Shannon diversity was higher in Kazakhstan. The deciduous forest edges of both areas had significantly higher species richness than the neighbouring habitats (forests and grasslands); therefore they can be considered local biodiversity hotspots. Due to the special characteristics of this vegetation complex, we emphasize the high conservation value of all landscape components as a coherent system throughout the entire range of the Eurasian forest-steppe biome.

Keywords

Conservation Endemic plant Forest edges Hungary Kazakhstan World heritage site 

Notes

Acknowledgements

The supports of the Hungarian Scientific Research Fund (AK: OTKA PD 116200; BD: OTKA PD 115627; LE: OTKA PD 116114; OV: OTKA PD111807 and NKFI FK 124404; ZB: NKFI K 124796) are gratefully acknowledged. AK was funded by the MTA’s Post-Doctoral Research Program; BD and OV were funded by the Bolyai János Fellowship of the Hungarian Academy of Sciences, LE’s and OV’s work was supported by the National Youth Excellence Scholarship (NTP-NFTÖ-16-0623, NTP-NTFÖ-16-0107). BD and OV were supported by the ÚNKP-17-4-III-DE-160 and ÚNKP-17-4-III-DE-151 New National Excellence Program of the Ministry of Human Capacities. We express our gratitude to the Kostanay State Pedagogical Institute and the Science-Research Centre of the Problems of Ecology and Biology of KSPI for their support during the period of research in Kazakhstan. We would like to thank Zsolt Pénzes for his help in statistical analysis. Thanks to Karsten Wesche and an anonymous reviewer for their perceptive and helpful comments.

Supplementary material

10531_2017_1477_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 48 kb)
10531_2017_1477_MOESM2_ESM.doc (43 kb)
Supplementary material 2 (DOC 43 kb)

References

  1. Ashcroft MB (2010) Identifying refugia from climate change. J Biogeogr 37:1407–1413Google Scholar
  2. Bátori Z, Csiky J, Farkas T et al (2014) The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. Int J Speleol 43:15–26CrossRefGoogle Scholar
  3. Bátori Z, Vojtkó A, Farkas T et al (2017) Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Ann Bot London 119:301–309CrossRefGoogle Scholar
  4. Berg LS (1958) Die geographischen Zonen der Sowjetunion I. Teubner, LeipzigGoogle Scholar
  5. Bilz M (2011) Dianthus serotinus. The IUCN Red List of Threatened Species 2011: e.T165217A5991480.  https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T165217A5991480.en
  6. Biró M, Czúcz B, Horváth F et al (2013) Drivers of grassland loss in Hungary during the post-socialist transformation (1987-1999). Landsc Ecol 28:789–803CrossRefGoogle Scholar
  7. Borhidi A, Kevey B, Lendvai G (2012) Plant communities of Hungary. Akadémiai Kiadó, BudapestGoogle Scholar
  8. Cadenasso ML, Pickett STA, Weathers KC et al (2003) A framework for a theory of ecological boundaries. Bioscience 53:750–758CrossRefGoogle Scholar
  9. Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91:175–183CrossRefGoogle Scholar
  10. Chen IC, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  11. Chibilyov A (2002) Steppe and forest-steppe. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 248–266Google Scholar
  12. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504Google Scholar
  13. Chytrý M, Tichý L, Holt J et al (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90CrossRefGoogle Scholar
  14. Deák B, Tóthmérész B, Valkó O et al (2016) Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers Conserv 25:2473–2490CrossRefGoogle Scholar
  15. Dengler J, Becker T, Ruprecht E et al (2012) Festuco-Brometea of the Transylvanian Plateau (Romania)—a preliminary overview on syntaxonomy, ecology and biodiversity. Tuexenia 32:319–359Google Scholar
  16. Dobrowski SZ (2010) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035CrossRefGoogle Scholar
  17. Dubyna DV, Neuhäuslová Z, Šeljag-Sosonko JR (1995) Vegetation of the Birjučij Island Spit in the Azov Sea. Folia Geobot Phytotx 30:1–31CrossRefGoogle Scholar
  18. Dulamsuren C, Hauck M, Mühlenberg M (2005) Vegetation at the taiga forest–steppe borderline in the western Khentey Mountains, northern Mongolia. Ann Bot Fenn 42:411–426Google Scholar
  19. Dulamsuren C, Hauck M, Leuschner C (2010) Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Glob Change Biol 16:3024–3035Google Scholar
  20. Dulamsuren C, Khishigjargal M, Leuschner C et al (2014) Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. J Plant Ecol 7:24–38CrossRefGoogle Scholar
  21. Eliáš P, Sopotlieva D, Dítě D et al (2013) Vegetation diversity of salt-rich grasslands in Southeast Europe. Appl Veg Sci 16:521–537CrossRefGoogle Scholar
  22. Erdős L, Gallé R, Bátori Z et al (2011) Properties of shrubforest edges: a case study from South Hungary. Cent Eur J Biol 6:639–658Google Scholar
  23. Erdős L, Cserhalmi D, Bátori Z et al (2013a) Shrub encroachment in a wooded-steppe mosaic: combining GIS methods with landscape historical analysis. Appl Ecol Environ Res 11:371–384CrossRefGoogle Scholar
  24. Erdős L, Gallé R, Körmöczi L et al (2013b) Species composition and diversity of natural forest edges: edge responses and local edge species. Community Ecol 14:48–58CrossRefGoogle Scholar
  25. Erdős L, Tölgyesi C, Horzse M et al (2014) Habitat complexity of the Pannonian forest-steppe zone and its nature conservation implications. Ecol Complex 17:107–118CrossRefGoogle Scholar
  26. Erdős L, Tölgyesi C, Cseh V et al (2015) Vegetation history, recent dynamics and future prospects of a Hungarian sandy forest-steppe reserve: forest-grassland relations, tree species composition and size-class distribution. Community Ecol 16:95–105CrossRefGoogle Scholar
  27. Ermakov N, Maltseva T (1999) Phytosociological peculiarities of South Siberian forest meadows. Ann Bot 57:63–72Google Scholar
  28. Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182CrossRefGoogle Scholar
  29. Fekete G, Molnár Z, Magyari E et al (2014) A new framework for understanding Pannonian vegetation patterns: regularities, deviations and uniqueness. Community Ecol 15:12–26CrossRefGoogle Scholar
  30. Feurdean A, Marinova E, Nielsen AB et al (2015) Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe). J Biogeogr 42:951–963CrossRefGoogle Scholar
  31. Fraver S (1994) Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River Basin, North Carolina. Conserv Biol 8:822–832CrossRefGoogle Scholar
  32. Habel JC, Dengler J, Janišová M et al (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138CrossRefGoogle Scholar
  33. Hartnett DC, Hickman KR, Walter LEF (1996) Effects of bison grazing, fire and topography on floristic diversity in tallgrass prairie. J Range Manag 49:413–420CrossRefGoogle Scholar
  34. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  35. Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520CrossRefPubMedGoogle Scholar
  36. Hoekstra JM, Boucher TM, Ricketts TH et al (2005) Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol Lett 8:23–29CrossRefGoogle Scholar
  37. Hoffmann CW, Usoltsev VA (2001) Modelling root biomass distribution in Pinus sylvestris forests of the Turgai Depression of Kazakhstan. For Ecol Manag 149:103–114CrossRefGoogle Scholar
  38. Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315CrossRefPubMedGoogle Scholar
  39. Horvat I, Glavač V, Ellenberg H (1974) Vegetation Südosteuropas. Gustav Fischer, StuttgartGoogle Scholar
  40. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101CrossRefGoogle Scholar
  41. Ivanov A (2002) The Far East. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 422–447Google Scholar
  42. Jakucs P (1972) Dynamische Verbindung der Wälder und Rasen. Akadémiai Kiadó, BudapestGoogle Scholar
  43. Kamp J, Koshkin MA, Bragina TM et al (2016) Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts. Biodivers Conserv 25:2521–2541CrossRefGoogle Scholar
  44. Keeley JE, Fotheringham CJ (2005) Plot shape effects on plant species diversity measurements. J Veg Sci 16:249–256CrossRefGoogle Scholar
  45. Kelemen A, Valkó O, Kröel-Dulay G et al (2016) The invasion of common milkweed (Asclepias syriaca L.) in sandy old-fields—is it a threat to the native flora? Appl Veg Sci 19:218–224CrossRefGoogle Scholar
  46. Kelly DL, Connolly A (2000) A review of the plant communities associated with Scots pine (Pinus sylvestris L.) in Europe, and an evaluation of putative indicator/specialist species. For Syst 1:15–39Google Scholar
  47. Kemball KJ, Wang GG, Dang QL (2005) Response of understory plant community of boreal mixedwood stands to fire, logging, and spruce budworm outbreak. Can J Bot 83:1550–1560CrossRefGoogle Scholar
  48. Keppel G, Van Niel KP, Wardell-Johnson GW et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404CrossRefGoogle Scholar
  49. Király G (ed) (2007) Vörös Lista. A magyarországi edényes flóra veszélyeztetett fajai, Saját kiadás, SopronGoogle Scholar
  50. Király G (ed) (2009) Új magyar füvészkönyv. Magyarország hajtásos növényei, Aggteleki Nemzeti Park Igazgatóság, JósvafőGoogle Scholar
  51. Király G, Stevanović V (2011) Dianthus diutinus. The IUCN red list of threatened species 2011: e.T161924A5514465.  https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T161924A5514465.en
  52. Kolasa J, Zalewski M (1995) Notes on ecotone attributes and functions. Hydrobiologia 303:1–7CrossRefGoogle Scholar
  53. Komarov VL (ed) (1968–2002) Flora of the U.S.S.R. Smithsonian Institution Libraries, Washington, DCGoogle Scholar
  54. Korotchenko I, Peregrym M (2012) Ukrainian steppes in the past, at present and in the future. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht, pp 173–196CrossRefGoogle Scholar
  55. Lavrenko EM (1969) Über die Lage des Eurasiatischen Steppengebiets in dem System der Pflanzengeographischen Gliederung des Aussertropischen Eurasiens. Vegetatio 19:11–20CrossRefGoogle Scholar
  56. Lavrenko EM, Karamysheva ZV (1993) Steppes of the former Soviet Union and Mongolia. In: Coupland RT (ed) Ecosystems of the world 8B. Natural grasslands, Eastern hemisphere and résumé, Elsevier, Amsterdam, pp 3–59Google Scholar
  57. Liu H, Yin Y, Wang Q et al (2015) Climatic effects on plant species distribution within the forest-steppe ecotone in northern China. Appl Veg Sci 18:43–49CrossRefGoogle Scholar
  58. Magyari EK, Chapman JC, Passmore DG et al (2010) Holocene persistence of wooded steppe in the Great Hungarian Plain. J Biogeogr 37:915–935CrossRefGoogle Scholar
  59. Mathar WP, Kämpf I, Kleinebecker T et al (2016) Floristic diversity of meadow steppes in the Western Siberian Plain: effects of abiotic site conditions, management and landscape structure. Biodivers Conserv 25:2361–2379CrossRefGoogle Scholar
  60. McLaughlin BC, Ackerly DD, Klos PZ, Natali J, Dawson TE, Thompson S (2017) Hydrologic refugia, plants, and climate change. Glob Change Biol.  https://doi.org/10.1111/gcb.13629 Google Scholar
  61. Mészáros I (1990) Spatial changes in herb layer in a beech forest/clear-cut area ecotone from northern Hungary. In: Krahulec F, Agnew ADQ, Agnew S, Willems JH (eds) Spatial processes in plant communities. Academia, Prague, pp 59–69Google Scholar
  62. Molnár Z (1998) Interpreting present vegetation features by landscape historical data: an example from a woodland-grassland mosaic landscape (Nagykőrös Wood, Kiskunság, Hungary). In: Kirby KJ, Watkins C (eds) The ecological history of European forests. CAB International, Wallingford, pp 241–263Google Scholar
  63. Molnár Z (2003) A Kiskunság száraz homoki növényzete. TermészetBÚVÁR Alapítvány Kiadó, BudapestGoogle Scholar
  64. Molnár Z, Biró M, Bartha S et al (2012) Past trends, present state and future prospects of Hungarian forest-steppes. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world, Springer, Dordrecht, pp 209–252Google Scholar
  65. Morrison DA (2002) Effects of fire intensity on plant species composition of sandstone communities in the Sydney region. Austral Ecol 27:433–441CrossRefGoogle Scholar
  66. Müller P (1981) Arealsysteme und Biogeographie. Ulmer Verlag, StuttgartGoogle Scholar
  67. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62CrossRefPubMedGoogle Scholar
  68. Novenko EY, Tsyganov AN, Rudenko OV et al (2016) Mid- and late-Holocene vegetation history, climate and human impact in the forest-steppe ecotone of European Russia: new data and a regional synthesis. Biodivers Conserv 25:2453–2472CrossRefGoogle Scholar
  69. Odum EP (1971) Fundamentals of Ecology, 3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  70. Oksanen J, Blanchet FG, Kindt R et al (2015) Vegan: community ecology. http://CRAN.R-project.org/package=vegan
  71. Orczewska A, Glista A (2005) Floristic analysis of the two woodland-meadow ecotones differing in orientation of the forest edge. Pol J Ecol 53:365–382Google Scholar
  72. Parnikoza I, Vasiluk A (2011) Ukrainian steppes: current state and perspectives for protection. Ann Univ Mariae Curie Skłodowska 66:23–37Google Scholar
  73. Peltzer DA, Bast ML, Wilson SD et al (2000) Plant diversity and tree responses following contrasting disturbances in boreal forest. For Ecol Manag 127:191–203CrossRefGoogle Scholar
  74. Peters DPC, Gosz JR, Pockman WT et al (2006) Integrating patch and boundary dynamics to understand and predict biotic transitions at multiple scales. Landsc Ecol 21:19–33CrossRefGoogle Scholar
  75. Pianka ER (1983) Evolutionary Ecology, 3rd edn. Harper and Raw, New YorkGoogle Scholar
  76. Pinheiro J, Bates D, Debroy S et al (2015) R Development Core Team, nlme: linear and nonlinear mixed effects models. R package version 3.1–122. http://CRAN.Rproject.org/package=nlme
  77. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  78. Rachkovskaya EI, Bragina TM (2012) Steppes of Kazakhstan: Diversity and present state. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world, Springer, Dordrecht, pp 103–148Google Scholar
  79. Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325CrossRefGoogle Scholar
  80. Sankaran M (2005) Fire, grazing and the dynamics of tall-grass savannas in the Kalakad-Mundanthurai Tiger Reserve, South India. Conserv Soc 3:4–25Google Scholar
  81. Schultz J (2005) The ecozones of the world. Springer, BerlinCrossRefGoogle Scholar
  82. Shahgedanova M, Mikhailov N, Larin S et al (2002) The mountains of southern Siberia. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 314–349Google Scholar
  83. Shmida A, Ellner S (1984) Coexistence of plant species with similar niches. Vegetatio 58:29–55Google Scholar
  84. Smekalova T, Maslovky O, Melnyk V (2011) Agropyron dasyanthum. The IUCN Red List of Threatened Species 2011: e.T176502A7254702. http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T176502A7254702.en. Accessed 08 January 2017
  85. Smelansky IE, Tishkov AA (2012) The steppe biome in Russia: Ecosystem services, conservation status, and actual challenges. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world, Springer, Dordrecht, pp 45–101Google Scholar
  86. Solomon S, Qin D, Manning M et al (eds) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York NYGoogle Scholar
  87. Stewart JR, Lister AM, Barnes I et al (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671CrossRefPubMedGoogle Scholar
  88. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  89. UNESCO nomination dossier of ‘Saryarka—Steppe and Lakes of Northern Kazakhstan’. For inscription on the list of cultural and natural world heritage of UNESCO, pp 351Google Scholar
  90. Valkó O, Török P, Deák B et al (2014) Review: prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Appl Ecol 15:26–33CrossRefGoogle Scholar
  91. van der Maarel E (1990) Ecotones and ecoclines are different. J Veg Sci 1:135–138CrossRefGoogle Scholar
  92. Varga Z (1995) Geographical patterns of biological diversity in the Palaearctic Region and the Carpathian Basin. Acta Zool Acad Sci H 41:71–92Google Scholar
  93. Vicherek J (1972) Die Sandpflanzengesellschaften des unteren und mittleren Dnejprstromgebietes (die Ukraine). Folia Geobot Phytotx 7:9–46CrossRefGoogle Scholar
  94. Walter H, Breckle SW (2002) Walter’s Vegetation of the Earth, 4th edn. Springer, BerlinGoogle Scholar
  95. Wesche K, Ambarlı D, Kamp J et al (2016) The Palaearctic steppe biome: a new synthesis. Biodivers Conserv 25:2197–2231CrossRefGoogle Scholar
  96. Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45:421–427CrossRefGoogle Scholar
  97. Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of Central and southeastern Europe. Quat Res 53:203–213CrossRefGoogle Scholar
  98. Zhang JT, Ru W, Li B (2006) Relationships between vegetation and climate on the loess plateau in China. Folia Geobot 41:151–163CrossRefGoogle Scholar
  99. Zlotin R (2002) Biodiversity and productivity of ecosystems. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 169–190Google Scholar
  100. Zólyomi B, Fekete G (1994) The Pannonian loess steppe: differentiation in space and time. Abstr Bot 18:29–41Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Zoltán Bátori
    • 1
  • László Erdős
    • 2
  • András Kelemen
    • 3
    • 4
  • Balázs Deák
    • 5
  • Orsolya Valkó
    • 5
  • Róbert Gallé
    • 1
  • Tatyana M. Bragina
    • 6
    • 7
  • Péter János Kiss
    • 1
  • György Kröel-Dulay
    • 2
  • Csaba Tölgyesi
    • 1
  1. 1.Department of EcologyUniversity of SzegedSzegedHungary
  2. 2.Institute of Ecology and BotanyMTA Centre for Ecological ResearchVácrátótHungary
  3. 3.Department of EcologyUniversity of DebrecenDebrecenHungary
  4. 4.MTA’s Post Doctoral Research ProgramMTA TKIBudapestHungary
  5. 5.MTA-DE Biodiversity and Ecosystem Services Research GroupDebrecenHungary
  6. 6.Kostanay State Pedagogical InstituteKostanayKazakhstan
  7. 7.FSBSI AzNIIRKHRostov-on-DonRussia

Personalised recommendations