Biodiversity and Conservation

, Volume 27, Issue 4, pp 981–1009 | Cite as

Spider communities in urban green patches and their relation to local and landscape traits

Original Paper
Part of the following topical collections:
  1. Urban biodiversity


Urbanization and urban landscape characteristics greatly alter plant and animal species richness and abundances in negative and positive directions. Spiders are top predators, often considered to be sensitive to habitat alteration. Studies in urban environments frequently focus on ground-dwelling spiders or on spiders in built structures, leaving aside foliage spiders. Effects of habitat, landscape type and structure and local characteristics on spider species composition, richness and relative abundance were evaluated in urban green patches in a temperate city of South America. We also assess whether Salticidae could be an indicator group for the broader spider community in the urban environment. Spiders were sampled with a G-VAC (aspirator) in urban green patches in Córdoba city, Argentina, in urban, suburban and exurban habitats (18 sites; six per habitat) and local and landscape traits were assessed. Overall, the exurban was richer than the urban habitat, however, at the site level Salticidae richness and abundance (but not the total spider assemblage) were significantly lower in urban sites. Species composition moderately differed between urban and exurban sites. Results indicate that on urban green spaces a low impervious surface cover, a coverage of trees, herbaceous vegetation and a vertical structure of vegetation at least up to 1 m in height contribute to higher richness and abundance of spiders, Salticidae being more sensitive than the overall spider community to local effects. In addition, Salticidae richness can predict 74% of the total spider richness recorded and may be used as spider diversity bio-indicators in this climatic region.


Diversity Argentina Araneae Salticidae Urbanization City 



We are especially grateful for taxonomic support received from Dr. Antonio Brescovit and Dr. Lemon Yuri (Instituto Butantan, São Paulo, Brazil); Dr. Arno Lise and Dr. Renato Teixeira (Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil); Dr. Martín Ramírez and Dr. Luis Piasentini (Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina); and Dr. Matías Izquierdo (Instituto de Diversidad y Ecología Animal-CONICET-UNC, Córdoba, Argentina). We acknowledge laboratory assistance from Leandro Wagner, Leandro Barbeito, Luna Silvetti, Alan Ruiz and Iliana Ontivero. We thank Alfredo Santa (IMBIV-CONICET-UNC) support with GIS processing. RM Gleiser and GD Rubio are Career researchers from CONICET. CI Argañaraz holds a scholarship from the same institution and is a doctorate of FCEFyN, UNC. We acknowledge four anonymous reviewers for several useful comments on the manuscript.


This project was partially funded by PICT-2014-2492 (Agencia Nacional de Promoción Científica y Tecnológica), PIP 112-2013-0100315CO (CONICET) and PIP 307 201501 00852 CB (SECYT-UNC) Grants.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alaruikka D, Kotze DJ, Matveinen K, Niemelä J (2002) Carabid beetle and spider assemblages along a forested urban–rural gradient in southern Finland. J Insect Conserv 6:195–206. CrossRefGoogle Scholar
  2. Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28(2):168–192. CrossRefGoogle Scholar
  3. Alberti M, Correa C, Marzluff JM, Hendry AP, Palkovacs EP, Gotanda KM, Hunt VM, Apgar TM, Zhou Y (2017) Global urban signatures of phenotypic change in animal and plant populations. PNAS 114(34):8951–8956. CrossRefPubMedGoogle Scholar
  4. Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. Google Scholar
  5. Argañaraz CI, Gleiser RM (2017) Does urbanization have positive or negative effects on Crab spider (Araneae: thomisidae) diversity? Zoologia 34(e19987):1–8. CrossRefGoogle Scholar
  6. Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kuhn I, MacGregor-Fors I, McDonnell M, Mortberg U, Pysek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B 281:20133330. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO A J Human Environ 37(2):114–118CrossRefGoogle Scholar
  8. Brazil TK, Almeida-Silva LM, Pinto-Leite CM, Lira-da-Silva RM, Lima Peres MC, Brescovit AD (2005) Aranhas sinantrópicas em três bairros da cidade de Salvador, Bahia, Brasil (Arachnida, Araneae). Biota Neotropica v5(n1a).
  9. Brown AD, Martínez-Ortíz U, Acerbi M, Corcuera J (2006) La situación ambiental argentina 2005. Fundación Vida Silvestre Argentina, Buenos Aires, p 587Google Scholar
  10. Bultman TL, Uetz GW (1984) Effect of structure and nutritional quality of litter on abundances of litter-dwelling arthropods. Am Midland Natur 111(1):165–172CrossRefGoogle Scholar
  11. Candiani DF, Indicatti RP, Brescovit AD (2005) Composição e diversidae da araneofauna (Araneae) de serapilheira em três florestas urbanas na cidade de São Paulo, São Paulo. Brasil. Biota Neotrop. 5(1a):111–123. CrossRefGoogle Scholar
  12. Cardoso P, Silva I, Oliveira NG, Serrano ARM (2004) Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 120:517–524. CrossRefGoogle Scholar
  13. Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6(6):e21710. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Catálogo de Arañas de Argentina (2017). Catálogo de Arañas de Argentina. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. Accessed 2 Oct 2017
  15. Ceplová N, Kalusová V, Lososová Z (2017) Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc Urban Plan 159:15–22. CrossRefGoogle Scholar
  16. Chao A, Colwell RK (2017) Thirty years of progeny from Chao’s inequality: estimating and comparing richness with incidence data and incomplete sampling. Statistics and Operation Research Transactions 41:3–54Google Scholar
  17. Chao A, Ma KH, Hsieh TC, Chiu CH (2015) User’s guide for online program SpadeR. Institute of Statistics. National Tsing Hua University.
  18. Coddington J, Levi H (1991) Systematics and evolution of spiders. Annu Rev Ecol Evol Syst 22:111–128CrossRefGoogle Scholar
  19. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared from samples. Version 9. Available on
  20. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727. CrossRefGoogle Scholar
  21. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5:3–21. CrossRefGoogle Scholar
  22. Crawley MJ (2015) Statistics: An Introduction Using R, 2nd edn. Wiley, ChichesterGoogle Scholar
  23. Cumming MS, Wesołowska W (2004) Habitat separation in a species-rich assemblage of jumping spiders (Araneae: Salticidae) in a suburban study site in Zimbabwe. J Zool 262:1–10. CrossRefGoogle Scholar
  24. Dahirel M, Dierick J, De Cock M, Bonte D (2017) Intraspecific variation shapes community-level behavioral responses to urbanization in spiders. Ecology 98(9):2379–2390. CrossRefPubMedGoogle Scholar
  25. Dias SC, Brescovit AD, Couto ECG, Martins CF (2006) Species richness and seasonality of spiders (Arachnida, Araneae) in an urban Atlantic Forest fragment in Northeastern Brazil. Urban Ecosyst 9:323–335. CrossRefGoogle Scholar
  26. Faeth S, Bang C, Saari S (2011) Urban biodiversity: patterns and mechanisms. Ann NY Acad Sci 1223:69–81. CrossRefPubMedGoogle Scholar
  27. Fischer ML, Grosskopf CB, Bazílio S, Ricetti J (2011) Araneofauna sinantrópica associada com a família Sicariidae no município de União da Vitória, Paraná. Brasil. Sitientibus série Ciên Biol 11(1):48–56CrossRefGoogle Scholar
  28. Forman RTT (2014) Urban ecology: science of cities. Cambridge University Press, CambridgeGoogle Scholar
  29. Gardiner MM, Landis DA, Gratton C, Schmidt M, O´Neal M, Mueller E, Chacon J, Heimpel GE (2010) Landscape composition influences the activity density of Carabidae and Arachnida in soybean fields. Biol Control 55:11–19. CrossRefGoogle Scholar
  30. Gibb E, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100. CrossRefGoogle Scholar
  31. Google Earth 2016. Version 7.1.726.00.
  32. Gray JS (1989) Effects of environmental stress on species rich assemblages. Biol J Linn Soc 37:19–32. CrossRefGoogle Scholar
  33. Gunnarsson B, Heyman E, Vowles T (2009) Bird predation effects on bush canopy arthropods in suburban forests. For Ecol Manage 257:619–627. CrossRefGoogle Scholar
  34. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Palaeontological Statistics software Package for Education and Data Analysis. Palaeontologia Electronica 4(1):9Google Scholar
  35. Hanson HI, Birkhofer K, Smith HG, Palmu E, Hedlund K (2017) Agricultural land use affects abundance and dispersal tendency of predatory arthropods. Basic Appl Ecol 18:40–49. CrossRefGoogle Scholar
  36. Hatley C, MacMahom J (1980) Spider community organization: seasonal variation and the role of vegetation architecture. Environ Entomol 9:632–639CrossRefGoogle Scholar
  37. Höfer H, Brescovit AD (2001) Species and guild structure of a Neotropical spider assemblage (Araneae) (Reserva Florestal Adolpho Ducke, Manaus, Amazonas, Brazil). Andrias 15:99–120Google Scholar
  38. Hore U, Uniyal VP (2008) Use of spiders (Araneae) as indicator for monitoring of habitat conditions in Tarai conservation Area, India. Indian Forester 134:1371–1380Google Scholar
  39. Horváth R, Magura T, Tóthmérész B (2012) Ignoring ecological demands masks the real effect of urbanization: a case study of ground-dwelling spiders along a rural–urban gradient in a lowland forest in Hungary. Ecol Res 27:1069–1077. CrossRefGoogle Scholar
  40. Horváth R, Elek Z, Lövei GL (2014) Compositional changes in spider (Araneae) assemblages along an urbanization gradient near a Danish town. Bull Insectol 67:255–264Google Scholar
  41. Horváth R, Magura T, Szinetár C, Eichardt J, Kovács E, Tóthmérész B (2015) In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agric Ecosyst Environ 208:106–113. CrossRefGoogle Scholar
  42. Huang PS, Tso IM, Lin HC, Lin LK, Lin CP (2011) Effects of thinning on spider diversity of an east Asia subtropical plantation forest. Zool Stud 50(6):705–717. Google Scholar
  43. Jiménez-Valverde A, Baselga A, Melic A, Txasko N (2010) Climate and regional beta diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conserv Divers 3:51–60. CrossRefGoogle Scholar
  44. Kaltsas D, Panayiotou E, Chatzaki M, Mylonas M (2014) Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. Eur J Entomol 111:59–67. CrossRefGoogle Scholar
  45. Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808CrossRefGoogle Scholar
  46. Lowe EC, Wilder SM, Hochuli DF (2014) Urbanisation at multiple scales is associated with larger size and higher fecundity of an orb-weaving spider. PLoS ONE 9(8):e105480. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lowe EC, Wilder SM, Hochuli DF (2016) Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter? Urban Ecosyst 19:705–720. CrossRefGoogle Scholar
  48. Lowe EC, Wilder SM, Hochuli DF (2017) Life history of an urban-tolerant spider shows resilience to anthropogenic habitat disturbance. J Urban Ecol. Google Scholar
  49. Mader V, Birkhofer K, Fiedler D, Thorn S, Wolters V, Diehl E (2016) Land use at different spatial scales alters the functional role of web-building spiders in arthropod food webs. Agric Ecosyst Environ 219:152–162. CrossRefGoogle Scholar
  50. Maelfait JP, Hendrickx F (1998) Spiders as bio-indicators of anthropogenic stress in natural and semi-natural habitats in Flanders (Belgium): some recent developments. Proceedings of the 17th European Colloquium of Arachnology P.A. Selden (ed.). pp:293–300Google Scholar
  51. Magura T, Tóthmérész B, Hornung E, Horváth R (2008) Urbanisation and ground-dwelling invertebrates. In: Wagner L (ed) Urbanization: 21st Century Issues and Challenges. Nova Science Publishers, Inc., New YorkGoogle Scholar
  52. Magura T, Horváth R, Tóthmérész B (2010) Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landsc Ecol 25:621–629. CrossRefGoogle Scholar
  53. McDonnel MJ, Pickett STA (1990) Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 4(71):1232–1237. CrossRefGoogle Scholar
  54. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. CrossRefGoogle Scholar
  55. Meineke EK, Holmquist AJ, Wimp GM, Frank SD (2017) Changes in spider community composition are associated with urban temperature, not herbivore abundance. J Urban Ecol 3(1):juw010. CrossRefGoogle Scholar
  56. Metzner H (2017) Jumping spiders (Arachnida: Araneae: Salticidae) of the world. Accessed 10 Oct 2017
  57. Moorhead LC, Philpott SM (2013) Richness and composition of spiders in urban green spaces in Toledo, Ohio. J Arachnol 41:356–363. CrossRefGoogle Scholar
  58. Murphy DD (1988) Chapter 7: challenges to biological diversity in urban areas. In: Wilson EO, Peter FM (eds) Biodiversity. National Academies Press, Washington DCGoogle Scholar
  59. New TR (1999) Untangling the web: spiders and the challenges of invertebrate conservation. J Insect Conserv 3:251–256CrossRefGoogle Scholar
  60. Oliveira U, Brescovit AD, Santos AJ (2017) Sampling effort and species richness assessment: a case study on Brazilian spiders. Biodivers Conserv 26:1481–1493. CrossRefGoogle Scholar
  61. Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabaidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic 6:780–793. CrossRefGoogle Scholar
  62. Pickett STA, Kolassa J, Armesto JJ, Collins SL (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136CrossRefGoogle Scholar
  63. Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92:331–362. CrossRefPubMedGoogle Scholar
  64. Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. PNAS 92:4382–4386CrossRefPubMedPubMedCentralGoogle Scholar
  65. Proszynski J (2006) Salticidae (Araneae) of the World 1995-2015, Part II: Global Species Database of Salticidae (Araneae). Accessed 10 October 2017
  66. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  67. Richman DB, Jackson RR (1992) A review of the ethology of jumping spider (Araneae: Salticidae). Bull Br Arachnol Soc 9:33–37Google Scholar
  68. Rubio GD (2015) Diversidad de arañas (Araneae, Araneomorphae) en la selva de montaña: un caso de estudio en las Yungas Argentinas. Graellsia 71(2):1–21CrossRefGoogle Scholar
  69. Rubio GD (2016) Using a jumping spider fauna inventory (Araneae: Salticidae) as an indicator of their taxonomic diversity in Misiones, Argentina. Rev Biol Trop 64:875–883. CrossRefGoogle Scholar
  70. Rubio GD, Argañaraz CI, Gleiser RM (2015) A new species of jumping spider Neonella Gertsch, with notes on the genus and male identification key (Araneae: Salticidae). ZooKeys 532:1–14. CrossRefGoogle Scholar
  71. Rypstra AL, Carter PE, Balfour RA, Marshall SD (1999) Architectural features of agricultural habitats and their impact on the spider inhabitants. J Arachnol 27:371–377Google Scholar
  72. Shochat E, Stefanov WL, Whitehouse EA, Faeth SH (2004) Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecol Appl 14:268–280. CrossRefGoogle Scholar
  73. Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191. CrossRefPubMedGoogle Scholar
  74. Sørensen LL (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv 13:437–452. CrossRefGoogle Scholar
  75. Streiner DL (2013) A Guide for the Statistically Perplexed: Selected Readings for Clinical Researchers Paperback. Canadian Psychiatric AssociationGoogle Scholar
  76. Szymkowiak P, Górski G, Bajerlein D (2007) Passive dispersal in arachnids. Biol Lett 44(2):75–101Google Scholar
  77. Taucare-Ríos A, Brescovit AD, Canals M (2013) Synanthropic spiders (Arachnida: Araneae) from Chile. Rev Ibérica Aracnol 23:49–56. Google Scholar
  78. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  79. Tsai ZI, Huang PS, Tso IM (2006) Habitat management by aboriginals promotes high spider diversity on an Asian tropical island. Ecography 29:84–94CrossRefGoogle Scholar
  80. Uetz GW, Halaj J, Cady AB (1999) Guild structure of spiders in major crops. J Arachnol 27:270–280Google Scholar
  81. United Nations Department of Economic and Social Affairs/Population Division (2008) World Urbanization Prospects. The 2007 Revision. United Nations. New York. ESA/P/WP/205Google Scholar
  82. Varet M, Pétillon J, Burel F (2011) Comparative responses of spider and carabid beetle assemblages along an urban-rural boundary gradient. J Arachnol 39:236–243. CrossRefGoogle Scholar
  83. Varet M, Burel F, Lafage D, Pétillon J (2013) Age-dependent colonization of urban habitats: a diachronic approach using carabid beetles and spiders. Animal Biol 63:257–269. Google Scholar
  84. Vergnes A, Pellissier V, Lemperiere G, Rollard C, Clergeau P (2014) Urban densification causes the decline of ground-dwelling arthropods. Biodivers Conserv 23:1859–1877. CrossRefGoogle Scholar
  85. Walker JS, Grimm NB, Briggs JM, Gries C, Dugan L (2009) Effects of urbanization on plant species diversity in central Arizona. Front Ecol Environ 7(9):465–470. CrossRefGoogle Scholar
  86. Weterings R, Umponstira C, Buckley HL (2014) Predation on mosquitoes by common Southeast Asian house-dwelling jumping spiders (Salticidae). Arachnology 16(4):122–127. CrossRefGoogle Scholar
  87. Zapata LV, Grismado CJ (2015) Lista sistemática de arañas (Arachnida: Araneae) de la Reserva Ecológica Costanera Sur (Ciudad Autónoma de Buenos Aires, Argentina), con notas sobre su taxonomía y distribución. Rev Mus Argentino Cienc Nat 17(2):183–211Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Universidad Nacional de Córdoba- CONICET, IMBIV, Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN)CórdobaArgentina
  2. 2.Estación Experimental Agropecuaria Cerro Azul (EEA Cerro Azul), INTAMisionesArgentina
  3. 3.Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y NaturalesCórdobaArgentina

Personalised recommendations